Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs, and azaarenes) in air from four climate zones of China: Occurrence, gas/particle partitioning, and health risks

Wei, C; Bandowe, BAM; Han, Y; Cao, J; Watson, JG; Chow, JC; Wilcke, W; ,

HERO ID

7613442

Reference Type

Journal Article

Year

2021

Language

English

PMID

33971611

HERO ID 7613442
In Press No
Year 2021
Title Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs, and azaarenes) in air from four climate zones of China: Occurrence, gas/particle partitioning, and health risks
Authors Wei, C; Bandowe, BAM; Han, Y; Cao, J; Watson, JG; Chow, JC; Wilcke, W; ,
Journal Science of the Total Environment
Volume 786
Page Numbers 147234
Abstract Polycyclic aromatic compounds (PACs) such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives [oxygenated PAHs (OPAHs), nitrated PAHs (NPAHs), and azaarenes (AZAs)] are toxic and ubiquitous air pollutants. In this study, the concentrations of these PACs were determined in air obtained in spring and autumn of 2012 from urban and rural areas of the Tibetan Plateau, temperate, subtropical, and tropical climate zones in China. Average concentrations (gaseous + particulate) of ∑29PAHs, ∑15OPAHs, ∑11NPAHs, and ∑4AZAs were 928 ± 658, 54 ± 45, 5.3 ± 4.4, 14 ± 11 ng m-3 and 995 ± 635, 67 ± 38, 8.4 ± 6.1, 24 ± 16 ng m-3 in spring and autumn, respectively. Various C fractions and latitude correlated significantly with the concentrations and ratios of PACs. The slopes of the regression of gas-particle partition coefficients (Kp) of PACs on their sub-cooled liquid vapor pressures (PL0), indicated both adsorption and absorption to total suspended particles (TSP) for PAHs, OPAHs, and NPAHs in the four studied climatic zones. This result was further supported by comparing the fractions of PACs in TSP calculated from field data with those predicted by the Junge-Pankow adsorption and KOA absorption models. The concentration ratios of most OPAHs or NPAHs to their parent PAHs and of benzo[e]pyrene/benzo[a]pyrene were higher in autumn than in spring and increased with remoteness from point sources. This suggests enhanced secondary formation of PAH derivatives due to the elevated photochemical activity in autumn and longer ageing of air and associated transformation of PACs during their long-distance transport from source regions (urban sites) to rural sites. Lifetime lung cancer risk estimated from PACs ranged from 0.8 ± 0.6 to 3.1 ± 1.0 (×10-3), exceeding the value (10-5) recommended by the WHO. Gaseous PACs contributed substantially to the estimated cancer risks and their contributions increased with decreasing latitude in China.
Doi 10.1016/j.scitotenv.2021.147234
Pmid 33971611
Url https://linkinghub.elsevier.com/retrieve/pii/S0048969721023056
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English
Keyword Cancer risk; Gas-particle partitioning; NPAHs; OPAHs; Sorption mechanism