Plant diversity improves the effluent quality and stability of floating constructed wetlands under increased ammonium/nitrate ratio in influent

Wang, X; Luo, B; Wang, L; Zhao, Y; Wang, Q; Li, D; Gu, B; Min, Y; Chang, SX; Ge, Y; Chang, J

HERO ID

6773300

Reference Type

Journal Article

Year

2020

Language

English

PMID

32314745

HERO ID 6773300
In Press No
Year 2020
Title Plant diversity improves the effluent quality and stability of floating constructed wetlands under increased ammonium/nitrate ratio in influent
Authors Wang, X; Luo, B; Wang, L; Zhao, Y; Wang, Q; Li, D; Gu, B; Min, Y; Chang, SX; Ge, Y; Chang, J
Journal Journal of Environmental Management
Volume 266
Page Numbers 110607
Abstract The major targets of constructed wetlands (CWs) during wastewater treatment include achieving high-quality effluent and maintaining stable effluent quality. Plant species diversity can increase nitrogen (N) removal efficiency and improve effluent quality by decreasing the effluent N concentrations, including nitrate (NO3--N), ammonium (NH4+-N) and total inorganic nitrogen (TIN) concentrations in CWs. However, the effect of plant diversity on the stability of effluent quality in response to perturbation in the form of an increased NH4+/NO3- ratio in influent has not been studied. This study conducted a microcosm experiment and assembled four plant species richness levels (1, 2, 3 and 4) and 15 species compositions by using 90 simulated CW microcosms to investigate the effect of plant diversity on the effluent N concentrations and their stability with an increase in the influent NH4+/NO3- ratio from 0:100 to 33:67 in the later stage of the experiment. The results showed that (1) plant species richness maintained a positive effect on effluent quality under an increased influent NH4+/NO3- ratio; (2) high species richness enhanced the stability of effluent water quality; (3) the presence of Phragmites australis in the community decreased the effluent TIN concentration and improved its stability under perturbation; and (4) the presence of Typha latifolia had a positive effect on N removal efficiency under perturbation. The establishment of communities with high plant species richness and proper species (such as P. australis) could simultaneously improve the effluent quality and stability in CWs for treating wastewater with increased NH4+/NO3- ratio.
Doi 10.1016/j.jenvman.2020.110607
Pmid 32314745
Wosid WOS:000531083400025
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English