Sensitive, quantitative carbon-13 NMR spectra by mechanical sample translation

Donovan, KJ; Allen, M; Martin, RW; Shaka, AJ

HERO ID

558705

Reference Type

Journal Article

Year

2009

Language

English

PMID

19179097

HERO ID 558705
In Press No
Year 2009
Title Sensitive, quantitative carbon-13 NMR spectra by mechanical sample translation
Authors Donovan, KJ; Allen, M; Martin, RW; Shaka, AJ
Journal Journal of Magnetic Resonance
Volume 197
Issue 2
Page Numbers 237-241
Abstract Collecting a truly quantitative carbon-13 spectrum is a time-consuming chore. Very long relaxation delays, required between transients to allow the z-magnetization, Mz, of the spin with the longest T1 to return to the equilibrium value, M0, must precede each transient. These long delays also reduce sensitivity, as fewer transients per unit time can be acquired. In addition, sometimes T1 is not known to within even a factor of two: a conservative guess for the relaxation delay then leads to very low sensitivity. We demonstrate a fresh method to bypass these problems and collect quantitative carbon-13 spectra by swapping the sample volume after each acquisition with a different portion where the magnetization is already equilibrated to M0. Loading larger sample volumes of 10-20 mL into an unusually long (1520 mm) 5 mm OD. NMR tube and vertically sliding the tube between acquisitions accomplishes the swap. The relaxation delay can then be skipped altogether. The spectra are thus both quantitative, and far more sensitive. We demonstrate the moving tube technique on two small molecules (thymol and butylhydroxytoluene) and show good carbon-13 quantification. The gain in sensitivity can be as much as 10-fold for slowly-relaxing 13C resonances. These experiments show that quantitative, sensitive carbon-13 spectra are possible whenever sufficient sample volumes are available. The method is applicable to any slow-relaxing nuclear spin species, such as 29Si, 15N and other low-[gamma] nuclei.
Doi 10.1016/j.jmr.2008.11.016
Pmid 19179097
Is Certified Translation No
Dupe Override No
Comments Journal: Journal of magnetic resonance (San Diego, Calif. : 1997) ISSN: 1096-0856Scopus URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-62549161283&doi=10.1016%2fj.jmr.2008.11.016&partnerID=40&md5=e8d888f43c8c8c68a143495925d8d2ec
Is Public Yes
Language Text English
Keyword Carbon-13 NMR; Quantitative NMR; Sensitivity enhancement; Mechanical sample translation; Quaternary carbon; Metabolomics; Metabonomics
Is Qa No