Major sex pheromone components of the Australian gum leaf skeletonizer Uraba lugens: (10E,12Z)-hexadecadien-1-yl acetate and (10E,12Z)-hexadecadien-1-ol

Gibb, AR; Suckling, DM; Fielder, S; Bunn, B; Jamieson, LE; Larsen, ML; Walter, GH; Kriticos, DJ

HERO ID

4936488

Reference Type

Journal Article

Year

2008

Language

English

PMID

18679751

HERO ID 4936488
In Press No
Year 2008
Title Major sex pheromone components of the Australian gum leaf skeletonizer Uraba lugens: (10E,12Z)-hexadecadien-1-yl acetate and (10E,12Z)-hexadecadien-1-ol
Authors Gibb, AR; Suckling, DM; Fielder, S; Bunn, B; Jamieson, LE; Larsen, ML; Walter, GH; Kriticos, DJ
Journal Journal of Chemical Ecology
Volume 34
Issue 9
Page Numbers 1125-1133
Abstract Two sex pheromone components of the gum leaf skeletonizer, Uraba lugens (Lepidoptera: Nolidae), recently established in New Zealand, were identified. Gas chromatography (GC) electroantennographic detection analyses of female pheromone gland extracts gave three compounds that consistently elicited antennal responses. Chemical analyses, using GC and GC-mass spectrometry, in conjunction with 4-methyl-1,2,4-triazoline-3,5-dione and dimethyldisulfide derivatizations, identified these compounds as (10E,12Z)-hexadecadien-1-yl acetate (E10,Z12-16:Ac), (10E,12Z)-hexadecadien-1-ol (E10,Z12-16:OH), and (Z)-11-hexadecen-1-yl acetate (Z11-16:Ac). A trapping trial in Queensland, Australia, in 2002, indicated that a blend of the two major components E10,Z12-16:Ac and E10,Z12-16:OH could attract gum leaf skeletonizer males. In the same trial, E10,Z12-16:Ac alone trapped large numbers of an unidentified nolid, Nola spp. Further trials in Auckland, New Zealand established that these two components were sufficient and necessary for trap catch of males; adding minor gland components, (10E,12E)-hexadecadien-1-yl acetate (E10,E12-16:Ac), Z11-16:Ac, or octadecan-1-ol (18:OH), to the two-component lure did not result in increased trap catches. Behavioral observations and gland analyses of the Auckland population revealed that female moths begin calling soon after emergence, with peak calling and pheromone production occurring 7 hr into the scotophase. Analysis of gland extract at two-hourly intervals during the first activity period showed that the ratio of E10,Z12-16:Ac to E10,Z12-16:OH (mean of 86: 14, respectively) and pheromone titer were fairly constant. No qualitative or quantitative differences in pheromone components were detected between gland extracts from Tasmanian univoltine and Auckland bivoltine populations of U. lugens.
Doi 10.1007/s10886-008-9523-2
Pmid 18679751
Wosid WOS:000258674600002
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English