Benzene/toluene/p-xylene degradation. Part II. Effect of substrate interactions and feeding strategies in toluene/benzene and toluene/p-xylene fermentations in a partitioning bioreactor

Collins, LD; Daugulis, AJ

HERO ID

4929516

Reference Type

Journal Article

Year

1999

Language

English

PMID

10531649

HERO ID 4929516
In Press No
Year 1999
Title Benzene/toluene/p-xylene degradation. Part II. Effect of substrate interactions and feeding strategies in toluene/benzene and toluene/p-xylene fermentations in a partitioning bioreactor
Authors Collins, LD; Daugulis, AJ
Journal Applied Microbiology and Biotechnology
Volume 52
Issue 3
Page Numbers 360-365
Abstract A two-phase aqueous/organic partitioning bioreactor scheme was used to degrade mixtures of toluene and benzene, and toluene and p-xylene, using simultaneous and sequential feeding strategies. The aqueous phase of the partitioning bioreactor contained Pseudomonas sp. ATCC 55595, an organism able to degrade benzene, toluene and p-xylene simultaneously. An industrial grade of oleyl alcohol served as the organic phase. In each experiment, the organic phase of the bioreactor was loaded with 10.15 g toluene, and either 2.0 g benzene or 2.1 g p-xylene. The resulting aqueous phase concentrations were 50 mg/l, 25 mg/l and 8 mg/l toluene, benzene and p-xylene respectively. The simultaneous fermentation of benzene and toluene consumed these compounds at volumetric rates of 0.024 g l-1 h-1 and 0.067 g l-1 h-1, respectively. The simultaneous fermentation of toluene and p-xylene consumed these xenobiotics at volumetric rates of 0.066 g l-1 h-1 and 0.018 g l-1 h-1, respectively. A sequential feeding strategy was employed in which toluene was added initially, but the benzene or p-xylene aliquot was added only after the cells had consumed half of the initial toluene concentration. This strategy was shown to improve overall degradation rates, and to reduce the stress on the microorganisms. In the sequential fermentation of benzene and toluene, the volumetric degradation rates were 0.056 g l-1 h-1 and 0.079 g l-1 h-1, respectively. In the toluene/p-xylene sequential fermentation, the initial toluene load was consumed before the p-xylene aliquot was consumed. After 12 h in which no p-xylene degradation was observed, a 4.0-g toluene aliquot was added, and p-xylene degradation resumed. Excluding that 12-h period, the microbes consumed toluene and p-xylene at volumetric rates of 0.074 g l-1 h-1 and 0.025 g l-1 h-1, respectively. Oxygen limitation occurred in all fermentations during the rapid growth phase.
Doi 10.1007/s002530051532
Pmid 10531649
Wosid WOS:000083088800010
Is Certified Translation No
Dupe Override No
Comments ProQuest URL: https://www.proquest.com/scholarly-journals/benzene-toluene-p-xylene-degradation-part-ii/docview/884650370/se-2?accountid=171501
Is Public Yes
Language Text English
Is Peer Review Yes
Relationship(s)