Nitrite-oxidizing activity responds to nitrite accumulation in soil
Giguere, AT; Taylor, AE; Myrold, DD; Mellbye, BL; Sayavedra-Soto, LA; Bottomley, PJ
| HERO ID | 4740200 |
|---|---|
| In Press | No |
| Year | 2018 |
| Title | Nitrite-oxidizing activity responds to nitrite accumulation in soil |
| Authors | Giguere, AT; Taylor, AE; Myrold, DD; Mellbye, BL; Sayavedra-Soto, LA; Bottomley, PJ |
| Journal | FEMS Microbiology Ecology |
| Volume | 94 |
| Issue | 3 |
| Abstract | The factors influencing how soil nitrite (NO2-)- and ammonia (NH3)-oxidizing activities remain coupled are unknown. A short-term study (<48 h) was conducted to examine the dynamics of NO2--oxidizing activity and the accumulation of NO2- in three Oregon soils stimulated by the addition of 1 mM NH4+ in soil slurry. Nitrite initially accumulated in all three soils; its subsequent decline or slowing of the accumulation of the NO2- pool by 24 h was accompanied by an increase in the size of the nitrate (NO3-) pool, indicating a change in NO2- oxidation kinetics. Bacterial protein synthesis inhibitors prevented the NO2- pool decline, resulting in a larger accumulation in all three soils. Although no significant increases in NO2--oxidizing bacteria nxrA (Nitrobacter) and nxrB (Nitrospira) gene abundances were detected over the time course, maximum NO2- consumption rates increased 2-fold in the treatment without antibiotics compared to no change with antibiotics. No changes were observed in the apparent half saturation constant (Km) values for NO2- consumption. This study demonstrates phenotypic flexibility among soil NO2- oxidizers, which can undergo protein synthesis-dependent increases in NO2- consumption rates to match NH3 oxidation rates and recouple nitrification. |
| Doi | 10.1093/femsec/fiy008 |
| Pmid | 29360963 |
| Wosid | WOS:000429480200009 |
| Is Certified Translation | No |
| Dupe Override | No |
| Is Public | Yes |
| Language Text | English |