Development of high-porosity resorcinol formaldehyde aerogels with enhanced mechanical properties through improved particle necking under CO2 supercritical conditions

Alshrah, M; Tran, MP; Gong, P; Naguib, HE; Park, CB

HERO ID

4469416

Reference Type

Journal Article

Year

2017

Language

English

PMID

27649092

HERO ID 4469416
In Press No
Year 2017
Title Development of high-porosity resorcinol formaldehyde aerogels with enhanced mechanical properties through improved particle necking under CO2 supercritical conditions
Authors Alshrah, M; Tran, MP; Gong, P; Naguib, HE; Park, CB
Journal Journal of Colloid and Interface Science
Volume 485
Page Numbers 65-74
Abstract A new high porosity resorcinol-formaldehyde (RF) aerogel with improved particle necking is presented in this work. This RF aerogel was developed under CO2 supercritical drying conditions without any structural shrinkage. The water content and the catalyst percentage were varied to modify the particles' nucleation and growth mechanisms and to control particle-particle connections. The nucleation mechanism solely dependent on the initial catalyst percentage; the number of nuclei increased with the catalyst percentage. However, the growth and connection of the particles dependent on both the water content and the catalyst percentage through their effect on the pH value. As the water content increased to have a larger void fraction, the pH value decreased. Consequently, the spherical growth of the particles became dominant and, thereby, the connection of the particles became more difficult. But as the catalyst percentage increased, the pH value increased, and the connection of the particles became facilitated with the formation of necks around the particles. As a result, the semi-fibril-like structure was developed with a high void fraction. A 30% increase in the structural elasticity and a very low thermal conductivity of 0.0249W/mK were obtained.
Doi 10.1016/j.jcis.2016.09.030
Pmid 27649092
Wosid WOS:000385900400009
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English