Mechanistic data and risk assessment of selected toxic end points of the thyroid gland

Capen, CC

HERO ID

30031

Reference Type

Journal Article

Subtype

Review

Year

1997

Language

English

PMID

9061850

HERO ID 30031
Material Type Review
In Press No
Year 1997
Title Mechanistic data and risk assessment of selected toxic end points of the thyroid gland
Authors Capen, CC
Journal Toxicologic Pathology
Volume 25
Issue 1
Page Numbers 39-48
Abstract Many goitrogenic xenobiotics that increase the incidence of thyroid tumors in rodents exert a direct effect on the thyroid gland to disrupt one of several possible steps in the biosynthesis, secretion, and metabolism of thyroid hormones. This includes (a) inhibition of the iodine trapping mechanism, (b) blockage of organic binding of iodine and coupling of iodothyronines to form thyroxine (T4) and triiodothyronine (T3), and (c) inhibition of thyroid hormone secretion by an effect on proteolysis of active hormone from the colloid. Another large group of goitrogenic chemicals disrupts thyroid hormone economy by increasing the peripheral metabolism of thyroid hormones through an induction of hepatic microsomal enzymes. This group includes central nervous system-acting drugs, calcium channel blockers, steroids, retinoids, chlorinated hydrocarbons, polyhalogenated biphenyls, and enzyme inducers. Thyroid hormone economy also can be disrupted by xenobiotics that inhibit the 5'-monodeiodinase that converts T4 in peripheral sites to biologically active T3. Inhibition of this enzyme by FD&C Red No. 3 lowers circulating T3 levels, which results in a compensatory increased secretion of thyroid stimulating hormone (TSH), follicular cell hypertrophy and hyperplasia, and an increased incidence of follicular cell tumors in 2-yr or lifetime studies in rats. Physiologic perturbations alone, such as the feeding of an iodine-deficient diet, partial thyroidectomy, natural goitrogens in certain foods, and transplantation of TSH-secreting pituitary tumors in rodents also can disrupt thyroid hormone economy and, if sustained, increase the development of thyroid tumors in rats. A consistent finding with all of these goitrogens, be they either physiologic perturbations or xenobiotics, is the chronic hypersecretion of TSH, which places the rodent thyroid gland at greater risk to develop tumors through a secondary (indirect) mechanism of thyroid oncogenesis associated with hormonal imbalances.
Doi 10.1177/019262339702500109
Pmid 9061850
Url http://tpx.sagepub.com/cgi/doi/10.1177/019262339702500109
Is Certified Translation No
Dupe Override No
Comments Toxicol. Pathol. 25: 39-48.
Is Public Yes
Language Text English
Is Peer Review Yes