UV curable polyurethane acrylate coatings for metal surfaces

Srivastava, A; Agarwal, D; Mistry, S; Singh, F

HERO ID

2892020

Reference Type

Journal Article

Year

2008

Language

English

HERO ID 2892020
In Press No
Year 2008
Title UV curable polyurethane acrylate coatings for metal surfaces
Authors Srivastava, A; Agarwal, D; Mistry, S; Singh, F
Journal Pigment & Resin Technology
Volume 37
Issue 4
Page Numbers 217-223
Abstract Purpose - The purpose of this paper is to synthesise environment friendly UV curable polyurethane acrylate resins for various industrial applications and study the performance properties of the cured coating films applied over metal surfaces. <br> <br>Design/methodology/approach - The polyurethane acrylate resin was synthesised using polyester polyol (synthesised using ethylene glycol, adipic acid and 1,6 hexane diol), isophorone diisocynate (IPDI) and 2-hydroxy ethyl methacrylate (HEMA). The different formulations were developed using various reactive diluents viz. monofunctional, difunctional, trifunctional and tetrafunctional (ethoxylated phenol monoacrylate, 1, 6 hexane diol di acrylate, dipropylene glycol di acrylate, trimethylol propane triacrylate, propoxylated trimethylol propane triacrylate, pentaerythrol triacrylate - PETA). These samples were cured under UV radiation. For effective curing, various compositions of oligomers, photoinitiator and reactive diluents were used. The mechanical, optical, rheological, chemical and stain resistance properties were evaluated. <br> <br>Findings - The designed polyurethane acrylate gave good performance properties when used with reactive diluents having different functionality in different ratios for application over metal surfaces as protective coatings for various industrial applications. While using reactive diluents, the coating compositions showed significant enhancement of mechanical, physical and chemical resistance properties. Owing to different functionality of reactive diluents used, highly cross-linked structures are formed, which lead to excellent mechanical and chemical properties. The optimum results were obtained with PETA as reactive diluent. <br> <br>Research limitations/implications - The polyurethane resin has been synthesised from polyester polyol (made up of ethylene glycol, adipic acid and 1, 6 hexane diol), IPDI, 2-HEMA. Besides, this, it can be synthesised from some other polyester polyol or polyether polyol. In addition to this, some other isocyanates such as TDI, MDI, HDI, HMDI, etc. may be used. <br> <br>Practical implications - The study has provided a better solution for developing low volatile organic compound (VOC) products by using UV radiations, which can be cured within a minimum period of time and can save significant application curing time for the end-users. The developed product is also an environmentally friendly product. <br> <br>Originality/value - Metallic surfaces are widely used in packaging industry in rigid and semi-rigid forms. One of the prime requirements of the surface is an attractive printing on it. Conventionally used coating system on metallic surfaces are not holding or retaining their decorative effect/gloss level to a large extent. For this purpose, an overprint varnish is normally used which is mostly solvent based. This paper has been able to suggest very good formulations for printing of metallic surfaces for packaging and for overprinting in particular, which is radiation curable and environment friendly.
Doi 10.1108/03699420810887843
Wosid WOS:000259533800002
Is Certified Translation No
Dupe Override No
Comments Scopus URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-48249143209&doi=10.1108%2f03699420810887843&partnerID=40&md5=5a9a93b00bbb8245db3cf729940a5aa6
Is Public Yes
Language Text English
Keyword organic compounds; resins; polyurethane; polyacrylates; metals