Synchrotron photoionization mass spectrometry measurements of product formation in low-temperature n-butane oxidation: toward a fundamental understanding of autoignition chemistry and n-C4H9 + O2/s-C4H9 + O2 reactions

Eskola, AJ; Welz, O; Savee, JD; Osborn, DL; Taatjes, CA

HERO ID

2283668

Reference Type

Journal Article

Year

2013

Language

English

PMID

24125058

HERO ID 2283668
In Press No
Year 2013
Title Synchrotron photoionization mass spectrometry measurements of product formation in low-temperature n-butane oxidation: toward a fundamental understanding of autoignition chemistry and n-C4H9 + O2/s-C4H9 + O2 reactions
Authors Eskola, AJ; Welz, O; Savee, JD; Osborn, DL; Taatjes, CA
Journal Journal of Physical Chemistry A
Volume 117
Issue 47
Page Numbers 12216-12235
Abstract Product formation in the laser-initiated low-temperature (575-700 K) oxidation of n-butane was investigated by using tunable synchrotron photoionization time-of-flight mass spectrometry at low pressure (∼4 Torr). Oxidation was triggered either by 351 nm photolysis of Cl2 and subsequent fast Cl + n-butane reaction or by 248 nm photolysis of 1-iodobutane or 2-iodobutane. Iodobutane photolysis allowed isomer-specific preparation of either n-C4H9 or s-C4H9 radicals. Experiments probed the time-resolved formation of products and identified isomeric species by their photoionization spectra. For stable primary products of butyl + O2 reactions (e.g., butene or oxygen heterocycles) bimodal time behavior is observed; the initial prompt formation, primarily due to chemical activation, is followed by a slower component arising from the dissociation of thermalized butylperoxy or hydroperoxybutyl radicals. In addition, time-resolved formation of C4-ketohydroperoxides (C4H8O3, m/z = 104) was observed in the n-C4H9 + O2 and Cl-initiated oxidation experiments but not in the s-C4H9 + O2 measurements, suggesting isomeric selectivity in the combined process of the "second" oxygen addition to hydroperoxybutyl radicals and subsequent internal H-abstraction/dissociation leading to ketohydroperoxide + OH. To further constrain product isomer identification, Cl-initiated oxidation experiments were also performed with partially deuterated n-butanes (CD3CH2CH2CD3 and CH3CD2CD2CH3). From these experiments, the relative yields of butene product isomers (cis-2-butene, trans-2-butene, and 1-butene) from C4H8 + HO2 reaction channels and oxygenated product isomers (2,3-dimethyloxirane, 2-methyloxetane, tetrahydrofuran, ethyloxirane, butanal, and butanone) associated with OH formation were determined. The current measurements show substantially different isomeric selectivity for oxygenated products than do recent jet-stirred reactor studies but are in reasonable agreement with measurements from butane addition to reacting H2/O2 mixtures at 753 K.
Doi 10.1021/jp408467g
Pmid 24125058
Wosid WOS:000327812800005
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English