Aerosol Transport and Source Attribution Using Sunphotometers, Models and In-Situ Chemical Composition Measurements

Vladutescu, DV; Madhavan, BL; Gross, BM; Zhang, Qi; Zhou, S

HERO ID

2099759

Reference Type

Journal Article

Year

2013

HERO ID 2099759
In Press No
Year 2013
Title Aerosol Transport and Source Attribution Using Sunphotometers, Models and In-Situ Chemical Composition Measurements
Authors Vladutescu, DV; Madhavan, BL; Gross, BM; Zhang, Qi; Zhou, S
Journal IEEE Transactions on Geoscience and Remote Sensing
Volume 51
Issue 7
Page Numbers 3803-3811
Abstract Understanding of chemical, physical, and radiative processes-emissions, transport, deposition, and modification of aerosol optical properties due to ageing-is of major importance to global and regional climate simulations and projections as well as health impairment. This paper presents aerosol optical properties retrieved with the Multifilter Rotating Shadowband Radiometers (MFRSRs) and the source attribution based on back trajectories and in situ aerosol chemical composition analysis obtained during the Aerosol Life Cycle Intensive Observational Period at Brookhaven National Laboratory on Long Island, NY, during July and August 2011. The aerosol optical properties retrieved with the MFRSR exhibit excellent agreement with those obtained with a colocated Cimel sunphotometer. Apportioning aerosol optical depths by size modes reveals several episodes of high loading of fine aerosol (diameter less than 2.5 mu m). Analysis of optical and physical properties of aerosols as well as their chemical composition obtained by an in situ high-resolution time-of-flight aerosol mass spectrometer together with back trajectories indicates that the principal source of high concentrations of fine aerosols observed during July 18-24 was forest fires in western Canada, consistent with reports by the Canadian Forest Service and satellite observations by the Moderate Resolution Imaging Spectroradiometer (MODIS).
Doi 10.1109/TGRS.2012.2227489
Wosid WOS:000320942600002
Is Certified Translation No
Dupe Override No
Is Public Yes
Keyword Aerosol mass spectrometry; aerosol optical depth; aerosol size modes; Cimel; Multifilter Rotating Shadowband Radiometer (MFRSR); sunphotometer; transport