Determination of isoprene and alpha-/beta-pinene oxidation products in boreal forest aerosols from Hyytiala, Finland: Diel variations and possible link with particle formation events

Kourtchev, I; Ruuskanen, TM; Keronen, P; Sogacheva, L; Dal Maso, M; Reissell, A; Chi, X; Vermeylen, R; Kulmala, M; Maenhaut, W; Claeys, M

HERO ID

199847

Reference Type

Journal Article

Year

2008

Language

English

PMID

18211553

HERO ID 199847
In Press No
Year 2008
Title Determination of isoprene and alpha-/beta-pinene oxidation products in boreal forest aerosols from Hyytiala, Finland: Diel variations and possible link with particle formation events
Authors Kourtchev, I; Ruuskanen, TM; Keronen, P; Sogacheva, L; Dal Maso, M; Reissell, A; Chi, X; Vermeylen, R; Kulmala, M; Maenhaut, W; Claeys, M
Journal Plant Biology
Volume 10
Issue 1
Page Numbers 138-149
Abstract Biogenic volatile organic compounds (VOCs), such as isoprene and alpha-/beta-pinene, are photo-oxidized in the atmosphere to non-volatile species resulting in secondary organic aerosol (SOA). The goal of this study was to examine time trends and diel variations of oxidation products of isoprene and alpha-/beta-pinene in order to investigate whether they are linked with meteorological parameters or trace gases. Separate day-night aerosol samples (PM(1)) were collected in a Scots pine dominated forest in southern Finland during 28 July-11 August 2005 and analyzed with gas chromatography/mass spectrometry (GC/MS). In addition, inorganic trace gases (SO(2), CO, NO(x), and O(3)), meteorological parameters, and the particle number concentration were monitored. The median total concentration of terpenoic acids (i.e., pinic acid, norpinic acid, and two novel compounds, 3-hydroxyglutaric acid and 2-hydroxy-4-isopropyladipic acid) was 65 ng m(-3), while that of isoprene oxidation products (i.e., 2-methyltetrols and C(5) alkene triols) was 17.2 ng m(-3). The 2-methyltetrols exhibited day/night variations with maxima during day-time, while alpha-/beta-pinene oxidation products did not show any diel variation. The sampling period was marked by a relatively high condensation sink, caused by pre-existing aerosol particles, and no nucleation events. In general, the concentration trends of the SOA compounds reflected those of the inorganic trace gases, meteorological parameters, and condensation sink. Both the isoprene and alpha-/beta-pinene SOA products were strongly influenced by SO(2), which is consistent with earlier reports that acidity plays a role in SOA formation. The results support previous proposals that oxygenated VOCs contribute to particle growth processes above boreal forest.
Doi 10.1055/s-2007-964945
Pmid 18211553
Wosid WOS:000252496800014
Is Certified Translation No
Dupe Override No
Comments Source: Web of Science WOS:000252496800014
Is Public Yes
Language Text English
Keyword secondary organic aerosol; isoprene; alpha-pinene; photo-oxidation; acidity; condensation sink
Is Qa No
Relationship(s)