IRIS Formaldehyde (Inhalation) [Final 2024]

Project ID

4051

Category

IRIS

Added on

Oct. 28, 2021, 8:42 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  DNA-protein cross-links (DPCs) are important DNA lesions induced by endogenous crosslinking agents such as formaldehyde or acetaldehyde, as well as ionizing radiation, cancer chemotherapeutic drugs, and abortive action of some enzymes. Due to their very bulky nature, they are expected to interfere with DNA and RNA synthesis and DNA repair. DPCs are highly genotoxic and the ability of cells to deal with them is relevant for many chemotherapeutic interventions. However, interactions of DNA polymerases with DPCs have been poorly studied due to the lack of a convenient experimental model. We have used NaBH4-induced trapping of E. coli formamidopyrimidine-DNA glycosylase with DNA to construct model DNA polymerase substrates containing a DPC in single-stranded template, or in the template strand of double-stranded DNA, or in the non-template (displaced) strand of double-stranded DNA. Nine DNA polymerases belonging to families A, B, X, and Y were studied with respect to their behavior upon encountering a DPC: Klenow fragment of E. coli DNA polymerase I, Thermus aquaticus DNA polymerase I, Pyrococcus furiosus DNA polymerase, Sulfolobus solfataricus DNA polymerase IV, human DNA polymerases β, κ and λ, and DNA polymerases from bacteriophages T4 and RB69. Although none were able to fully bypass DPCs in any context, Family B DNA polymerases (T4, RB69) and Family Y DNA polymerase IV were able to elongate the primer up to the site of the cross-link if a DPC was located in single-stranded template or in the displaced strand. In other cases, DNA synthesis stopped 4-5 nucleotides before the site of the cross-link in single-stranded template or in double-stranded DNA if the polymerases could displace the downstream strand. We suggest that termination of DNA polymerases on a DPC is mostly due to the unrelieved conformational strain experienced by the enzyme when pressing against the cross-linked protein molecule.

Journal Article

Abstract  Serotonin distribution in early Ophryotrocha embryos was investigated with fluorescence microscopy based on formaldehyde gas treatment of the embryos, and with light- and electron-microscopic autoradiography after the embryos had been treated with3H-5-hydroxytryptophan.Sections of early cleavage embryos showed serotonin-specific fluorescence all over the blastomeres, but it was mainly concentrated on yolk granules, and to a lesser degree on lipid drops and vacuoles. In 2-8 cell embryos, marked regional concentration of serotonin fluorescence was noticeable along the completed cleavage furrows.The autoradiographs confirmed the picture of the yolk granules as the principal site of serotonin formation and serotonin accumulation; considerable amounts were also associated with their decomposition products, i.e. lipid drops, vacuoles, and vesicles, whereas major cell organelles, e.g. mitochondria, were almost totally lacking. Of cytoplasmic structures in the blastomeres without apparent yolk granule origin, only microfilaments, particularly those amassed along the cleavage furrow, showed consistent and significant association with formed serotonin. This suggests a connexion between serotonin and microfilaments and might imply that in early embryo cells the fundamental contractile machinery is controlled by serotonin gradually released from the yolk granules.Within the blastomere nuclei, moderate amounts of serotonin were demonstrated with both fluorescence microscopy and autoradiography.The monoamine oxidase (MAO) inhibitor catron® (phenylisopropylhydrazine), used to intensify the autoradiographic picture of serotonin in the Ophryotrocha embryos, markedly increased intragranular serotonin accumulation, but also retarded yolk granule disintegration and delayed the cell cleavage process. In embryos barely able to cleave after treatment with catron®, ultrastructural analysis demonstrated that membrane formation at cell cleavage depends on influx of material from the nearby disintegrating yolk granules.

Journal Article

Abstract  Morphine administration in the neonatal period can induce long-term effects in pain circuitry leading to hyperalgesia induced by the opioid in adult life. This study explored a new pharmacological approach for reversing this effect of morphine. We focused on melatonin owing its well-known antinociceptive and anti-inflammatory effects, and its ability to interact with the opioid system. We used the formalin test to assess the medium and long-term effects of melatonin administration on hyperalgesia induced by morphine in early life. Newborn rats were divided into two groups: the control group, which received saline, and the morphine group, which received morphine (5μg subcutaneously [s.c.]) in the mid-scapular area, once daily for 7days, from P8 (postnatal day 8) until P14. At postnatal days 30 (P30) and 60 (P60), both groups were divided in two subgroups, which received melatonin or melatonin vehicle 30min before the formalin test. The nociceptive responses were assessed by analyzing the total time spent biting, flicking, and licking the formalin-injected hind paw; these responses were recorded during the first 5min (neurogenic/acute phase) and from 15 to 30min (inflammatory/tonic phase). Initially, animals in the morphine/vehicle group showed increased nociceptive behavior in phase II (inflammatory) of the formalin test at P30, and in the neurogenic and inflammatory phases at P60. These increased nociceptive responses were fully reversed by melatonin administration at either age. These findings show that melatonin administration is a potential means for countering hyperalgesia induced by neonatal morphine exposure in young and adult rats.

Journal Article

Abstract  Preclinical Research Gabapentin is an anticonvulsant used to treat neuropathic pain. Mangiferin is an antioxidant that has antinociceptive and antiallodynic effects in inflammatory and neuropathic pain models. The purpose of this study was to determine the interaction between mangiferin and gabapentin in the development and maintenance of formalin-induced secondary allodynia and hyperalgesia in rats. Gabapentin, mangiferin, or their fixed-dose ratio combination were administrated peripherally. Isobolographic analyses was used to define the nature of the interaction of antiallodynic and/or antihyperalgesic effects of the two compounds. Theoretical ED50 values for the combination were 74.31 µg/paw and 95.20 µg/paw for pre- and post-treatment, respectively. These values were higher than the experimental ED50 values, 29.45 µg/paw and 37.73 µg/paw respectively, indicating a synergistic interaction in formalin-induced secondary allodynia and hyperalgesia. The antiallodynic and antihyperalgesic effect induced by the gabapentin/mangiferin combination was blocked by administration of L-NAME, the soluble guanylyl cyclase inhibitor, ODQ and glibenclamide. These data suggest that the gabapentin- mangiferin combination produces a synergistic interaction at the peripheral level. Moreover, the antiallodynic and hyperalgesic effect induced by the combination is mediated via the activation of an NO-cyclic GMP-ATP-sensitive K+ channel pathway. Drug Dev Res 78 : 390-402, 2017. © 2017 Wiley Periodicals, Inc.

Journal Article

Abstract  Complete inactivation of infectious Ebola virus (EBOV) is required before a sample may be removed from a Biosafety Level 4 laboratory. The United States Federal Select Agent Program regulations require that procedures used to demonstrate chemical inactivation must be validated in-house to confirm complete inactivation. The objective of this study was to develop a method for validating chemical inactivation of EBOV and then demonstrate the effectiveness of several commonly-used inactivation methods. Samples containing infectious EBOV (Zaire ebolavirus) in different matrices were treated, and the sample was diluted to limit the cytopathic effect of the inactivant. The presence of infectious virus was determined by assessing the cytopathic effect in Vero E6 cells. Crucially, this method did not result in a loss of infectivity in control samples, and we were able to detect less than five infectious units of EBOV (Zaire ebolavirus). We found that TRIzol LS reagent and RNA-Bee inactivated EBOV in serum; TRIzol LS reagent inactivated EBOV in clarified cell culture media; TRIzol reagent inactivated EBOV in tissue and infected Vero E6 cells; 10% neutral buffered formalin inactivated EBOV in tissue; and osmium tetroxide vapors inactivated EBOV on transmission electron microscopy grids. The methods described herein are easily performed and can be adapted to validate inactivation of viruses in various matrices and by various chemical methods.

Journal Article

Abstract  A new high porosity resorcinol-formaldehyde (RF) aerogel with improved particle necking is presented in this work. This RF aerogel was developed under CO2 supercritical drying conditions without any structural shrinkage. The water content and the catalyst percentage were varied to modify the particles' nucleation and growth mechanisms and to control particle-particle connections. The nucleation mechanism solely dependent on the initial catalyst percentage; the number of nuclei increased with the catalyst percentage. However, the growth and connection of the particles dependent on both the water content and the catalyst percentage through their effect on the pH value. As the water content increased to have a larger void fraction, the pH value decreased. Consequently, the spherical growth of the particles became dominant and, thereby, the connection of the particles became more difficult. But as the catalyst percentage increased, the pH value increased, and the connection of the particles became facilitated with the formation of necks around the particles. As a result, the semi-fibril-like structure was developed with a high void fraction. A 30% increase in the structural elasticity and a very low thermal conductivity of 0.0249W/mK were obtained.

Journal Article

Abstract  The genetic mechanisms of how free-living nematodes evolved into parasites are unknown. Current genetic model nematodes (e.g. Caenorhabditis elegans) are not well suited to provide the answer, and mammalian parasites are expensive and logistically difficult to maintain. Here we propose the terrestrial gastropod parasite Phasmarhabditis hermaphrodita as a new alternative to study the evolution of parasitism, and outline the methodology of how to keep P. hermaphrodita in the lab for genetic experiments. We show that P. hermaphrodita (and several other Phasmarhabditis species) are easy to isolate and identify from slugs and snails from around the UK. We outline how to make isogenic lines using 'semi-natural' conditions to reduce in-lab evolution, and how to optimize growth using nematode growth media (NGM) agar and naturally isolated bacteria. We show that P. hermaphrodita is amenable to forward genetics and that unc and sma mutants can be generated using formaldehyde mutagenesis. We also detail the procedures needed to carry out genetic crosses. Furthermore, we show natural variation within our Phasmarhabditis collection, with isolates displaying differences in survival when exposed to high temperatures and pH, which facilitates micro and macro evolutionary studies. In summary, we believe that this genetically amenable parasite that shares many attributes with C. elegans as well as being in Clade 5, which contains many animal, plant and arthropod parasites, could be an excellent model to understand the genetic basis of parasitism in the Nematoda.

Journal Article

Abstract  This study was carried out to evaluate the effectiveness of an alcoholic propolis extract (15%) as a disinfectant for Japanese quail (Coturnix coturnix japonica) hatching eggs. A total of 600 eggs were randomly divided into four experimental groups: 1) negative control (NC), without disinfection, 2) control (C), fumigated with formaldehyde gas, 3) (A), sprayed with 96% alcohol, and 4) (P), sprayed with 15% alcoholic propolis extract. The eggs were incubated artificially in a BIOS hatching apparatus under standard conditions. On the 14th day, the eggs were candled to determine the number of infertile eggs and dead embryos and samples were collected for microbial analysis. After 17.5 d, fertility, hatchability, embryonic mortality, and eggshell conductance were calculated. Fertile eggs sprayed with propolis were shown to have a lower eggshell conductance constant (egg weight loss) than eggs from groups C and A. Total microbial activity on the eggshells did not differ significantly between groups, but Staphylococcus aureus, Micrococcus spp., Bordetella spp., and Chryseobacterium meningosepticum isolates were significantly affected by the propolis treatment. There were no significant differences between treatments for total hatchability, embryonic mortality, and chick body weight on the 1st, 7th, and 14th days of life. The total chick survivability during the first 2 wk was significantly higher in group P than in the other groups. The results indicate that spraying hatching eggs with 15% propolis as a disinfectant can be recommended as a safe and natural sanitizer in place of formaldehyde, with no negative effect on quail chicks.

Journal Article

Abstract  The mechanistic target of rapamycin (mTOR) has been demonstrated to mediate pain-related aversion induced by formalin in the rostral anterior cingulate cortex (rACC). However, it remains unclear the signaling pathways and regulatory proteins involved. In the rACC, brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator, has been shown to play a role in the development and persistence of chronic pain. In this study, we used a rat formalin-induced inflammatory pain model to demonstrate BDNF up-regulation in the rACC. Stimulation with exogenous BDNF up-regulated mTOR, whilst cyclotraxin B (CTX-B), a tropomyosin receptor kinase B (TrkB) antagonist, down-regulated mTOR. Our results suggest BDNF could activate an mTOR signaling pathway. Subsequently, we used formalin-induced conditioned place avoidance (F-CPA) training in rat models to investigate if mTOR activation was required for pain-related aversion. We demonstrated that BDNF/mTOR signaling could activate the NMDA receptor subunit episilon-2 (NR2B), which is required for F-CPA. Our results reveal that BDNF activates mTOR to up-regulate NR2B expression, which is required for inflammatory pain-related aversion in the rACC of rats.

DOI
Journal Article

Abstract  Seasonal occurrence of skin and gill parasites in fish ponds can substantially affect fish performance by reduced growth and increased mortality and hence the economic returns of aquaculture systems. To minimize loss of fish, preventive and curative water treatments are typically applied by adding sodium chloride and/or formalin into the ponds. This note from the field describes a simple alternative method to improve water quality in a Danish flow through fish farm. Instead of periodic formalin baths/flushes in all ponds, peracetic acid (PAA) was continuously added from a mixing tank to the common water inlet during daytime throughout the spring and summer season. The method was tested on a commercial organic flow through trout farm, and included verification of PAA residuals and distribution in the makeup water, within ponds and in the effluent from the fish farm. PAA was found to be evenly distributed to the ponds, achieved and maintained at concentrations around 0.10-0.15 mg PAA/1 corresponding to aimed values. PAA degraded within the fish ponds and negligible amounts of PAA were measured in the discharge. The economic and environmental feasibility of the applied low practical methods was demonstrated as white spot disease outbreak was absent throughout the season without using any formalin. (C) 2016 Elsevier Ltd. All rights reserved.

Journal Article

Abstract  Cellulose fibers have been successfully isolated from medium density fiberboards (MDFs) by sodium chlorite oxidation-potassium hydroxide (NaClO2-KOH) leaching process, at 37.6% yield, comparable to the 39.3% and 37.3% cellulose fibers from eucalyptus and eucalyptus with 12% cured urea-formaldehyde (UF) resin, respectively. At the same sulfuric acid hydrolysis conditions (65% H2SO4, 60°C and 30min), MDF cellulose nanocrystals (CNCs) were produced at 27.5% yield, similar to 27.4% of CNC yield from eucalyptus with UF resin, but less than 31.2% yield from eucalyptus. MDF CNCs were slightly thicker in lateral dimension (16.8±8.6nm), less crystalline (59% CrI), and surface esterificated (0.045mmol/g sulfate/CNC) than eucalyptus CNCs (11.6±3.9nm, 75% CrI, 0.060mmol/g) and CNCs from eucalyptus with UF resin (14.9±9.1nm, 65% CrI, 0.046mmol/g). All CNCs were free of UF resin and thermal stable. The residual resin in cellulose pulps hydrolyzed completely during the sulfuric acid treatment and contributed to the unique properties of CNCs. Therefore, CNCs derived from MDF are comparable to CNC from wood and promising for expanded applications.

DOI
Journal Article

Abstract  The activity of exposed crystal facets directly determines its physicochemical properties. Thus, acquiring a high percentage of reactive facets by crystal facet engineering is highly desirable for improving the catalytic reactivity. Herein, single-crystalline alpha-MnO2 nanowires with major exposed high-index {310} facets were synthesized via a facile hydrothermal route with the assistance of a capping agent of oxalate ions. Comparing with two other low-index facets ({100} and {110}), the resulting alpha-MnO2 nanowires with exposed {310} facets exhibited much better activity and stability for carcinogenic formaldehyde (HCHO) oxidation, making 100% of 100 ppm of HCHO mineralize into CO2 at 60 degrees C, even better than some Ag supported catalysts. The density functional theory (DFT) calculations were used to investigate the difference in the catalytic activity of alpha-MnO2 with exposed {100}, {110}, and {310} facets. The experimental characterization and theoretical calculations all confirm that the {310} facets with high surface energy can not only facilitate adsorption/activation of O-2 and H2O but also be beneficial to the generation of oxygen vacancies, which result in significantly enhanced activity for HCHO oxidation. This is a valuable report on engineering surface facets in the preparation of alpha-MnO2 as highly efficient oxidation catalysts. This study deepens the understanding of facet dependent activity of alpha-MnO2 and points out a strategy to improve their catalytic activity by crystal facet engineering.

Journal Article

Abstract  This guideline was created for the first time and is intended as a practical aid for the diagnosis and therapy of neuroendocrine tumors. The aim is to represent the current state of science, promote the recognition of the disease and improve the treatment of patients. The guideline was created under the leadership of the DGVS and with participation of neighbouring scientific societies.

Journal Article

Abstract  Respiratory epithelium cancers are the leading cause of cancer-related death worldwide. The multistep natural history of carcinogenesis can be considered as a gradual accumulation of genetic and epigenetic aberrations, resulting in the deregulation of cellular homeostasis. Growing evidence suggests that cross-talk between membrane and nuclear receptor signaling pathways along with the activator protein-1 (AP-1) cascade and its cofactor network represent a pivotal molecular circuitry participating directly or indirectly in respiratory epithelium carcinogenesis. The crucial role of AP-1 transcription factor renders it an appealing target of future nuclear-directed anticancer therapeutic and chemoprevention approaches. In the present review, we will summarize the current knowledge regarding the implication of AP-1 proteins in respiratory epithelium carcinogenesis, highlight the ongoing research, and consider the future perspectives of their potential therapeutic interest.

Journal Article

Abstract  Ketamine (KET), a NMDA antagonist, exerts an antidepressant effect at subanaesthetic doses and possesses analgesic and anti-inflammatory activities. We evaluated the involvement of KET antinociceptive and anti-inflammatory effects with its antidepressant action. Male Swiss mice were subjected to formalin, carrageenan-induced paw oedema and forced swimming tests, for assessing antinociceptive, anti-inflammatory and antidepressant effects. The treatment groups were as follows: control, KET (2, 5 and 10 mg/kg), lithium (LI: 5 mg/kg) and KET2 + LI5 combination. Immunohistochemistry analyses (TNF-α, iNOS, COX-2 and GSK3) in oedematous paws were performed. KET5 and KET10 reduced licking times in neurogenic (22 and 38%) and inflammatory (67 and 78%) phases of the formalin test, respectively, as related to controls. While LI5 inhibited the second phase by 24%, the licking time was inhibited by 26 and 59% in the KET2 + LI5 group (first and second phases). Furthermore, oedema volumes were reduced by 37 and 45% in the KET5 and KET10 groups, respectively. Oedema reductions were 29% in the LI5 group and 48% in the KET2 + LI5 group. In the forced swimming test, there were 23, 38 and 53% decreases in the immobility time in KET2, KET5 and KET10 groups, respectively. While LI5 caused no significant effect, decreases of 52% were observed with KET2 + LI5. KET also decreased TNF-α, iNOS, COX-2 and GSK3 immunostainings in oedematous paws, effects intensified with KET2 + LI5. We showed that KET presents antinociceptive and anti-inflammatory effects associated with its antidepressant response. Furthermore, our results indicate the close involvement of GSK3 inhibition and blockade of inflammatory responses, in the antidepressant drug effect.

Journal Article

Abstract  CONTEXT: Tarragon (Artemisia dracunculus L., Asteraceae) is an ancient herb, which is widely used as a medicine, flavoring, or fragrance.

OBJECTIVE: To determine the antinociceptive and anti-inflammatory effects of aerial parts of tarragon, we investigated the effects of ethanolic extract of the plant in adult male Balb/c mice.

MATERIALS AND METHODS: Antinociceptive activity was determined using formalin, hot-plate, and writhing tests. The effect of the ethanolic extract on acute inflammation was evaluated by xylene-induced ear edema in mice. The ethanolic extract was administered at doses of 5, 10, 50, and 100 mg/kg, i.p. The control group received saline as vehicle of ethanolic extract.

RESULTS: Our results showed that the ethanolic extract (50 and 100 mg/kg) decreased both phases of pain in the formalin test (ED50 = 109.66 and 87.13 mg/kg, respectively). In the hot-plate test, the extract (50 and 100 mg/kg) increased pain threshold during 60 min (ED50 = 81.03 mg/kg). The extract (50 and 100 mg/kg) exhibited antinociceptive activity against acetic acid-induced writhing (ED50 = 66.99 mg/kg). The extract (50 and 100 mg/kg) showed significant activity in the xylene ear edema test (ED50 = 78.20 mg/kg). Pretreatment of the animals with naloxone decreased the analgesia induced by the extract in hot-plate and formalin tests; therefore, opioid receptors may be involved, at least partly, in the analgesic effect of tarragon extract.

DISCUSSION AND CONCLUSION: The results suggested that tarragon have significant analgesic and anti-inflammatory effects in mice, and, therefore, further studies are required to evaluate these effects and additional potential of the plant.

Journal Article

Abstract  INTRODUCTION: The quality of tissue acquisition during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a major determinant of the diagnostic yield of the procedure. In the tissue button (TB) technique, the retrieved cellular specimen is fixed in ethanol and subsequently scraped from slide using surgical blade into formaldehyde and processed like ordinary tissue biopsy thus potentially increasing its diagnostic value.

OBJECTIVES: To retrospectively evaluate the diagnostic yield of a TB technique in patients undergoing EBUS-TBNA for various malignant and benign conditions.

METHODS: The diagnostic yield of specimen obtained by two methods (TB and traditional cell-block technique) performed during the same procedure are outlined in 46 patients who underwent EBUS-TBNA (median age = 65, range 19-85 years).

RESULTS: Overall, in both malignant and benign conditions, TB resulted in clear diagnostic material in 43/46 (93.4%) patients. Specifically, TB provided clear histological diagnosis of malignancy (either primary lung cancer or metastases from extra-thoracic cancer) in 30/46 (65.2%) patients and granulomatous inflammation in 11/46 (23.9%) of patients. Only in two patients TB did not provide diagnostic material.

CONCLUSIONS: The newly introduced TB technique provides valuable histological diagnostic material during EBUS-TBNA both malignant and benign conditions. Given its simplicity and its high diagnostic yield, TB should be considered to be used as one of the preferred specimen acquisition modalities during EBUS-TBNA specimen processing. Direct comparison to alternative tissue processing techniques during EBUS-TBNA should be explored in further randomized prospective studies.

Journal Article

Abstract  Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.

Journal Article

Abstract  BACKGROUND: Tarantulas (Theraphosidae) represent an important source of novel biologically active compounds that target a variety of ion channels and cell receptors in both insects and mammals. In this study, we evaluate and compare the pharmacological activity of venoms from three taxonomically different theraphosid spiders bred in captivity: Poecilotheria regalis, an aggressive arboreal tarantula from southeastern India; Ceratogyrus darlingi, an aggressive tarantula from southern Africa; and Brachypelma epicureanum, a docile tarantula from the Yucatan dry forest of Mexico. Prior to this study, no research had been conducted with regard to the composition and pharmacological activity of these venoms.

METHODS: The pharmacological characterization of the venoms was described for the first time by the assessment of their toxicity in crickets (LD50) along with their nociceptive (by using the formalin test), hyaluronidase, phospholipase A2, edematogenic and caseinolytic activity.

RESULTS: P. regalis and B. epicureanum venoms induced a similar lethal effect on crickets (LD50 = 5.23 ± 3.1 and 14.4 ± 5.0 μg protein/g 48 h post-injection, respectively), whereas C. darlingi venom (119.4 ± 29.5 μg protein/g 48 h post-injection) was significantly less lethal than the other two venoms. All three venoms induced similar edematogenic activity on rats but did not induce nociceptive behavior. The assessment of enzymatic activity indicated that P. regalis venom induces significantly higher hyaluronidase activity (27.6 ± 0.9 TRU/mg) than both C. darlingi (99.7 ± 1.9 TRU/mg) and B. epicureanum (99.6 ± 1.6 TRU/mg); these latter venoms did not display phospholipase A2 or caseinolytic activity.

CONCLUSIONS: This study demonstrates that these theraphosid spiders of different habitats produce venoms with different activities. P. regalis venom displays a high level of hyaluronidase activity, which may be associated with its potentially medically significant bite.

Journal Article

Abstract  Copper, as the third most abundant transition metal ions of human, plays an essential role in the redox reaction, signal transduction, hematopoiesis, and other physiological processes. Abnormal content of copper ions in the body will cause some diseases such as anemia, coronary heart disease, Menkes' syndrome. In this article, a new fluorescence probe L for Cu2+ was designed and synthetized by using 4-bromo-1,8 naphthalene anhydride and 2-thiophene formaldehyde as raw materials. Fluorescent probe L itself exhibited strong fluorescence, upon the addition of Cu2+ ions, the fluorescence was quenched. The fluorescent detection limit for Cu2+ ions was determined to be 1.8 μM based on a 3δ/S method. UV-vis absorption and fluorescence spectra indicated that probe L showed good selectivity and sensitivity for Cu2+, and this selectivity was not interfered by other metal ions and anions. Further cell fluorescence imaging experiments indicated that the probe L had potential to be used to examine copper ions in vivo.

DOI
Journal Article

Abstract  Early work from the Madix group identified a number of simple surface intermediate species which have proved to be of significance for industrial catalytic processes. Two of these intermediates are the methoxy and formate surface species. We discuss the formation and behavior of these on copper surfaces, and go on to highlight their role in two important industrial reactions, namely methanol synthesis and the selective oxidation of methanol to formaldehyde. The formate is the pivotal intermediate for methanol synthesis and is formed from the reaction of CO2 and H-2, whereas it is important to avoid the formation of that intermediate for selective methanol oxidation, which proceeds through dehydrogenation of the methoxy species. (C) 2016 Elsevier B.V. All rights reserved.

DOI
Journal Article

Abstract  The Co-Mg-Al mixed metal oxides were prepared by calcination of co-precipitated hydrotalcite-like precursors at various temperatures (600-800 A degrees C), characterised with respect to chemical (AAS) and phase (XRD) composition, textural parameters (BET), form and aggregation of cobalt species (UV-vis-DRS) and their redox properties (H-2-TPR, cyclic voltammetry). Moreover, the process of thermal decomposition of hydrotalcite-like materials to mixed metal oxide systems was studied by thermogravimetric method combined with the analysis of gaseous decomposition products by mass spectrometry. Calcined hydrotalcite-like materials were tested as catalysts for methanol incineration. Catalytic performance of the oxides depended on cobalt content, Mg/Al ratio and calcination temperature. The catalysts with lower cobalt content, higher Mg/Al ratio and calcined at lower temperatures (600 or 700 A degrees C) were less effective in the process of methanol incineration. In a series of the studied catalysts, the best results, with respect to high catalytic activity and selectivity to CO2, were obtained for the mixed oxide with Co:Mg:Al molar ratio of 10:57:33 calcined at 800 A degrees C. High activity of this catalyst was likely connected with the presence of a Co-Mg-Al spinel-type phases, containing easy reducible Co3+ cations, formed during high-temperature treatment of the hydrotalcite-like precursor.

Journal Article

Abstract  Balantioides coli is a ciliated protozoon that inhabits the intestine of pigs, non-human primates and humans. Light microscopy studies have described over 50 species of the genus Balantioides but their validity is in doubt. Due to the limited information about this genus, this study is aimed to identify morphological characteristics of Balantioides coli isolated using fluorescence microscopy and both scanning (SEM) and transmission electron microscopy (TEM). Trophozoites isolated from the feces of pig and macaque were washed and subjected to centrifugation. These cells were fixed with paraformaldehyde for immunofluorescence. Other aliquots of these trophozoites were fixed with glutaraldehyde, post fixed with osmium tetroxide and processed for SEM and TEM. Immunofluorescence studies revealed microtubules with a longitudinal distribution to the main axis of the parasite and in the constitution of cilia. SEM demonstrated a high concentration of cilia covering the oral apparatus and a poor presence of such structures in cytopyge. TEM revealed in the plasma membrane, several associated structures were observed to delineate the cellular cortex and mucocysts. The cytoskeleton of the oral region was observed in detail and had an organization pattern consisting of microtubules, which formed files and nematodesmal networks. Organelles such as hydrogenosomes like and peroxisomes were observed close to the cortex. Macronuclei were observed, but structures that were consistent with micronuclei were not identified. Ultrastructural morphological analysis of isolates confirms its similarity to Balantioides coli. In this study were identified structures that had not yet been described, such as hydrogenosomes like and cytoskeletal structures.

DOI
Journal Article

Abstract  The present study was carried out to determine the plexus sacralis and its branches in sparrowhawk (Accipiter nisus). Fifteen sparrowhawk were used in this study. Following the anaesthesing of the materials, cavity of the body was opened. Animals were fixed with formaldehyde after draining of their bloods. The nerves of plexus sacralis were separately dissected and photographed. Plexus sacralis was formed by the union of the branches of the synsacral spinal nerves which leave from ventrolaterale of os lumbosacrale. The plexus consisted of six (4-9) synsacral spinal nerves in sparrowhawk (Accipiter nisus). The nerves originating from plexus sacralis from cranial to caudal were nervus coxalis caudalis, the common root of nervus peroneus and nervus tibialis, nervus cutaneus femoris caudalis and the common branches of rami musculares. It was determined that general macroanatomical shapes of plexus sacralis and the distribution of nerves originating from this plexus were found to be similar with the other bird species in hawk which is one of the predatory bird species. However, it was determined that responsible for innervation of the leg and foot nervus peroneus and nervus tibialis common root and terminal branches of these nerves were significantly thick and strong in appearance.

  • <<
  • 1 of 400
  • >>
Filter Results