Uranium Toxicological Review

Project ID

3609

Category

IRIS

Added on

Aug. 25, 2021, 8:03 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream. (C) 2017 Elsevier B.V. All rights reserved.

Journal Article

Abstract  Biomass-based decontamination methods are among the most interesting water treatment techniques. In this study, 2 cyanobacterial strains, Nostoc punctiforme A.S/S4 and Chroococcidiopsis thermalis S.M/S9, isolated from hot springs containing high concentrations of radium (226Ra), were studied to be associated with removal of radionuclides (238U and 226Ra) and heavy metal cadmium (Cd) from aqueous solutions. The adsorption equilibrium data was described by Langmuir and Freundlich isotherm models. Kinetic studies indicated that the sorption of 3 metals followed pseudo-second-order kinetics. Effects of biomass concentration, pH, contact time, and initial metal concentration on adsorption were also investigated. Fourier-transform infrared spectroscopy revealed active binding sites on the cyanobacterial biomass. The obtained maximum biosorption capacities were 630 mg g-1 and 37 kBq g-1 for 238U and 226Ra for N. punctiforme and 730 mg g-1 and 55 kBq g-1 for C. thermalis. These 2 strains showed maximum binding capacity 160 and 225 mg g-1, respectively for Cd adsorption. These results suggest that radioactivity resistant cyanobacteria could be employed as an efficient adsorbent for decontamination of multi-component, radioactive and industrial wastewater.

Journal Article

Abstract  Groundwater pollution is a serious worldwide concern. Aromatic compounds, chlorinated hydrocarbons, metals and nutrients among others can be widely found in different aquifers all over the world. However, there is a lack of sustainable technologies able to treat these kinds of compounds. Microbial electro-remediation, by the means of microbial electrochemical technologies (MET), can become a promising alternative in the near future. MET can be applied for groundwater treatment in situ or ex situ, as well as for monitoring the chemical state or the microbiological activity. This document reviews the current knowledge achieved on microbial electro-remediation of groundwater and its applications.

Journal Article

Abstract  Floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, are important repositories of organic carbon, nutrients, and metal contaminants. The accumulation and release of these species is often mediated by redox processes. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability of sediment redox conditions is therefore critical to developing conceptual and numerical models of contaminant transport within floodplains. The Upper Colorado River Basin (UCRB) is impacted by former uranium and vanadium ore processing, resulting in contamination by V, Cr, Mn, As, Se, Mo and U. Previous authors have suggested that sediment redox activity occurring within organic carbon-enriched bodies located below the groundwater level may be regionally important to the maintenance and release of contaminant inventories, particularly uranium. To help assess this hypothesis, vertical distributions of Fe and S redox states and sulfide mineralogy were assessed in sediment cores from three floodplain sites spanning a 250km transect of the central UCRB. The results of this study support the hypothesis that organic-enriched reduced sediments are important zones of biogeochemical activity within UCRB floodplains. We found that the presence of organic carbon, together with pore saturation, are the key requirements for maintaining reducing conditions, which were dominated by sulfate-reduction products. Sediment texture was found to be of secondary importance and to moderate the response of the system to external forcing, such as oxidant diffusion. Consequently, fine-grain sediments are relatively resistant to oxidation in comparison to coarser-grained sediments. Exposure to oxidants consumes precipitated sulfides, with a disproportionate loss of mackinawite (FeS) as compared to the more stable pyrite. The accompanying loss of redox buffering capacity creates the potential for release of sequestered radionuclides and metals. Because of their redox reactivity and stores of metals, C, and N, organic-enriched sediments are likely to be important to nutrient and contaminant mobility within UCRB floodplain aquifers.

Journal Article

Abstract  Countermatching designs can provide more efficient estimates than simple matching or case-cohort designs in certain situations such as when good surrogate variables for an exposure of interest are available. We extend pseudolikelihood estimation for the Cox model under countermatching designs to models where time-varying covariates are considered. We also implement pseudolikelihood with calibrated weights to improve efficiency in nested case-control designs in the presence of time-varying variables. A simulation study is carried out, which considers four different scenarios including a binary time-dependent variable, a continuous time-dependent variable, and the case including interactions in each. Simulation results show that pseudolikelihood with calibrated weights under countermatching offers large gains in efficiency if compared to case-cohort. Pseudolikelihood with calibrated weights yielded more efficient estimators than pseudolikelihood estimators. Additionally, estimators were more efficient under countermatching than under case-cohort for the situations considered. The methods are illustrated using the Colorado Plateau uranium miners cohort. Furthermore, we present a general method to generate survival times with time-varying covariates. Copyright © 2016 John Wiley & Sons, Ltd.

DOI
Journal Article

Abstract  The importance of developing a source-term assessment technology has been emphasized owing to the decommissioning of Kori nuclear power plant (NPP) Unit 1 and the increase of deteriorated NPPs. We analyzed the behavioral mechanism of corrosion products in the primary system of a pressurized heavy-water reactor-type NPP. In addition, to check the possibility of applying the CRUDTRAN code to a Canadian Deuterium Uranium Reactor (CANDU)-type NPP, the type was assessed using collected domestic onsite data. With the assessment results, it was possible to predict trends according to operating cycles. Values estimated using the code were similar to the measured values. The results of this study are expected to be used to manage the radiation exposures of operators in high-radiation areas and to predict decommissioning processes in the primary system. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This is an open access article under the CC BY-NC-ND license

Journal Article

Abstract  The occurrence and mobility of different elements in oral smokeless tobacco products (STPs) were determined because the effects on human health must take into account their availability. In this research, the elemental analysis of 15 oral STPs of different brands purchased in local specialty stores in Europe, and the determination of % extraction of the different elements into an artificial salivary juice during the sucking or chewing operations were performed. In all samples analyzed, cobalt (Co) and chromium (Cr) (total) levels were <0.326 mg/kg. As far as non-essential or toxic elements, U was always <1.0 mg/kg, Th and Ti <0.1 mg/kg, Cd was <0.5. Pb was detectable in 60% of the samples, As in 33.3% and Ce in 20% of the samples; La was <1 mg/kg in 13 samples; Sb was <5 mg/kg in all sample with exception of sample 13; Al, Ni, Sr, Rb, Ba, Sn, Te, Ti and Hg were detectable in all samples. Using artificial saliva, the data of extractable levels show that the toxic elements, although poorly extracted, are not totally retained within the STPs, with a consequent potential health hazard associated with oral use of these products.

Journal Article

Abstract  The authors sampled and analyzed 15 species of dominant wild plants in Huanan uranium tailings pond in China, whose tailings' uranium contents were 3.21-120.52 μg/g. Among the 15 species of wild plants, ramie (Boehmeria nivea) had the strongest uranium bioconcentration and transfer capacities. In order to study the uranium bioconcentration and tolerance attributes of ramie in detail, and provide a reference for the screening remediation plants to phytoremedy on a large scale in uranium tailings pond, a ramie cultivar Xiangzhu No. 7 pot experiment was carried out. We found that both wild ramie and Xiangzhu No. 7 could bioconcentrate uranium, but there were two differences. One was wild ramie's shoots bioconcentrated uranium up to 20 μg/g (which can be regarded as the critical content value of the shoot of uranium hyperaccumulator) even the soil uranium content was as low as 5.874 μg/g while Xiangzhu No. 7's shoots could reach 20 μg/g only when the uranium treatment concentrations were 275 μg/g or more; the other was that all the transfer factors of 3 wild samples were >1, and the transfer factors of 27 out of 28 pot experiment samples were <1. Probably wild ramie was a uranium hyperaccumulator. Xiangzhu No. 7 satisfied the needs of uranium hyperaccumulator on accumulation capability, tolerance capability, bioconcentration factor, but not transfer capability, so Xiangzhu No. 7 was not a uranium hyperaccumulator. We analyzed the possible reasons why there were differences in the uranium bioconcentration and transfer attributes between wild ramie and Xiangzhu No. 7., and proposed the direction for further research. In our opinion, both the plants which bioconcentrate contaminants in the shoots and roots can act as phytoextractors. Although Xiangzhu No. 7's biomass and accumulation of uranium were concentrated on the roots, the roots were small in volume and easy to harvest. And Xiangzhu No. 7's cultivating skills and protection measures had been developed very well. Xiangzhu No. 7's whole bioconcentration factors and the roots' bioconcentration factors, which were 1.200-1.834 and 1.460-2.341, respectively, increased with the increases of uranium contents of pot soil when the soil's uranium contents are 25-175 μg/g, so it can act as a potential phytoextractor when Huanan uranium tailings pond is phytoremediated.

Journal Article

Abstract  PURPOSE: Long-term health risks of occupational exposures to uranium processing were examined to better understand potential differences with uranium underground miners and nuclear reactor workers.

METHODS: A cohort study of mortality of workers from Port Hope, Canada (1950-1999) and Wismut, Germany (1946-2008) employed in uranium milling, refining, and processing was conducted. Poisson regression was used to evaluate the association between cumulative exposures to radon decay products (RDP) and gamma-rays and causes of death potentially related to uranium processing.

RESULTS: The pooled cohort included 7431 workers (270,201 person-years of follow-up). Mean RDP exposures were lower than in miners while gamma-ray doses were higher than in reactor workers. Both exposures were highly correlated (weighted rho = 0.81). Radiation risks of lung cancer and cardiovascular diseases (CVD) in males were increased but not statistically significant and compatible with risks estimated for miners and reactor workers, respectively. Higher RDP-associated CVD risks were observed for exposures 5-14 years prior to diagnosis compared to later exposures and among those employed <5 years. Radiation risks of solid cancers excluding lung cancer were increased, but not statistically significant, both for males and females, while all other causes of death were not associated with exposures.

CONCLUSIONS: In the largest study of uranium processing workers to systematically examine radiation risks of multiple outcomes from RDP exposures and gamma-rays, estimated radiation risks were compatible with risks reported for uranium miners and nuclear reactor workers. Continued follow-up and pooling with other cohorts of uranium processing workers are necessary for future comparisons with other workers of the nuclear fuel cycle.

Book/Book Chapter

Abstract  Increasing industrial and military use of uranium has led to environmental pollution, which may result in uranium reaching the brain and causing cerebral dysfunction. A recent literature review has discussed data published over the last 10 years on uranium and its effects on brain function (Dinocourt C, Legrand M, Dublineau I, et al., Toxicology 337:58-71, 2015). New models of uranium exposure during neonatal brain development and the emergence of new technologies (omics and epigenetics) are of value in identifying new specific targets of uranium. Here we review the latest studies of neurogenesis, epigenetics, and metabolic dysfunctions and the identification of new biomarkers used to establish potential pathophysiological states of neurodevelopmental and neurodegenerative diseases.

Journal Article

Abstract  The crystal structures of two new bimetallic uranyl-transition metal compounds with diglycolic acid [or 2-(carboxymethoxy)acetic acid] have been hydrothermally synthesized and structurally characterized via single-crystal X-ray diffraction. The compounds, namely catena-poly[[[tetraaquamanganese(II)]-μ-2,2'-oxydiacetato-[dioxidouranium(VI)]-μ-2,2'-oxydiacetato] dihydrate], {[MnU(C4H4O5)2O2(H2O)4]·2H2O}n, and catena-poly[[[tetraaquacobalt(II)]-μ-2,2'-oxydiacetato-[dioxidouranium(VI)]-μ-2,2'-oxydiacetato] dihydrate], {[CoU(C4H4O5)2O2(H2O)4]·2H2O}n, both crystallize in the triclinic space group P-1. These compounds form one-dimensional chains via alternating uranyl and transition metal building units. The chains then assemble into three-dimensional supramolecular networks through several hydrogen bonds between water molecules and diglycolate ligands. Luminescence measurements were conducted and no uranyl emission was observed in either compound.

Journal Article

Abstract  BACKGROUND: Trace elements (TEs) are ubiquitous and their potential interest for human health has been constantly expanding. Biological monitoring is generally considered to be a useful tool to assess human exposure to chemical agents in risk assessment both at occupational and environmental levels. However, the knowledge of accurate reference values, which may vary across countries or regions, is a prerequisite for correct interpretation of biomonitoring data. This study aimed at determining the reference distribution and the upper reference limit for 26 TEs (Al, As, Sb, Ba, Be, Bi, Cd, Cr, Co, Cu, In, Li, Mn, Hg, Mo, Ni, Pd, Pt, Pb, Se, Te, Tl, Sn, U, V, Zn) in the urine of the general adult population residing in Belgium.

METHODS: In total, 1022 adults not occupationally or extra-occupationally (mainly via hobbies, drugs) exposed to these TEs were recruited by occupational physicians and toxicologists according to an a priori selection procedure. Non-fasting spot urine samples were analyzed for 460 males and 541 females by inductively coupled plasma mass spectrometry (ICP-MS). Careful control was applied during collection, handling and analyses of the samples to avoid any contamination.

RESULTS: Globally, the results indicate that the exposure levels of the Belgian population to these TEs are low and grossly similar to those recently published by other national surveys.

CONCLUSIONS: These new reference values and upper reference limits will be useful for future occupational and/or environmental surveys.

DOI
Journal Article

Abstract  Diffusion, rheology, and small angle neutron scattering (SANS) data for organic phase 30 v/v %tributyl phosphate (TBP) samples containing varying amounts of water, nitric acid, and uranium or zirconium nitrate were interpreted from a colloidal perspective to give information on the types of structures formed by TBP under different conditions. Taken as a whole, the results of the different analyses were contradictory, suggesting that these samples should be treated as molecular solutions rather than colloids. This conclusion is supported by molecular dynamics (MD) simulations showing the existence of small, molecular aggregates in TBP samples containing water and nitric acid. Interpretation of TBP and nitric acid diffusion measurements from a molecular perspective suggest that nitric acid and metal species formed are consistent with the stoichiometric solvates that have traditionally been considered to exist in solution. (C) 2017 Elsevier B.V. All rights reserved.

DOI
Journal Article

Abstract  High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350 mu m - 500 pm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must have very high uniformity and integrity.

To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230 degrees C to 1550 degrees C and use three different gas compositions, while the fuel particle diameters double, their density drops from11.1 g/cm(3) to 3.0 g/cm(3), and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition.

The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the retort wall and manage nozzle orifice accretions. The equipment and operating methods have yielded very good reliability of equipment and product reproducibility in the TRISO coated particles batches. (C) 2017 Elsevier B.V. All rights reserved.

DOI
Journal Article

Abstract  Electrochemical and X-ray photoelectron spectroscopic (XPS) methods have been used to study the combined influence of H(2)O(2) and H(2) on the oxidation of SIMFUEL (UO(2)) electrodes in 0.1 mol.dm(-3) KCl (pH = 9.5) at 60 degrees C. The SIMFUEL electrodes contain RE(III) (rare earth) ions at U(IV) lattice sites within the UO(2) matrix. In both Ar-purged and H(2)/Ar-purged solutions the final corrosion potential values were dependent on [H(2)O(2)]; however, the XPS analyses showed no differences in the degree of oxidation of uranium, indicating no enduring effect of H(2) on the oxidation of UO(2) in H(2)O(2)- containing solutions. However, in H2/Ar-purged solutions the corrosion potential achieves considerably more positive transient values than in Ar-purged solutions before relaxing to the final value. A possible reason is that the U(IV) reversible arrow U(VI) redox cycle induced by hydrogen peroxide oxidation and hydrogen reduction activates the UO(2) surface, leading to a temporary enhancement of UO(2) dissolution (as UO(2)(2+)). (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.073112jes] All rights reserved.

DOI
Journal Article

Abstract  With data from in vitro and in situ investigations, we developed a mathematical model to describe cellular uptake of uranium and arsenic in solution by living Lemna gibba under homeostatic regulation. The model considers the ability of healthy cells to resist accumulation of toxic metal species by regulating physicochemical properties of the cell membrane. In the bulk solution, the ratio of the total amounts of bioavailable metal ions to the metal ions uptake by the cells is very high. Consequently, the main rate-limiting processes of uptake are the biosorption kinetics on both external and internal surfaces at the biological interface, and the transport of the metal ions across the cell membrane. The model prediction correlates well with uptake results from field and microcosm experiments for uranium and arsenic by L. gibba, a model ecotoxicological test organism.

Journal Article

Abstract  Amyotrophic lateral sclerosis (ALS) is a fatal disorder with unknown etiology, in which genetic and environmental factors interplay to determine the onset and the course of the disease. Exposure to toxic metals has been proposed to be involved in the etiology of the disease either through a direct damage or by promoting oxidative stress. In this study we evaluated the concentration of a panel of metals in serum and whole blood of a small group of sporadic patients, all living in a defined geographical area, for which acid mine drainage has been reported. ALS prevalence in this area is higher than in the rest of Italy. Results were analyzed with software based on artificial neural networks. High concentrations of metals (in particular Se, Mn and Al) were associated with the disease group. Arsenic serum concentration resulted lower in ALS patients, but it positively correlated with disease duration. Comet assay was performed to evaluate endogenous DNA damage that resulted not different between patients and controls. Up to now only few studies considered geographically well-defined clusters of ALS patients. Common geographical origin among patients and controls gave us the chance to perform metallomic investigations under comparable conditions of environmental exposure. Elaboration of these data with software based on machine learning processes has the potential to be extremely useful to gain a comprehensive view of the complex interactions eventually leading to disease, even in a small number of subjects.

Journal Article

Abstract  Pollution by trace elements and its possible effect on organisms has become a worldwide concern due to the increasing presence of trace elements in the environment and especially in the food chain. Exposure to chemicals has traditionally been measured using environmental samples, however, human biomonitoring brings a different perspective, in which all sources and exposure pathways are integrated. The objective of this paper is to discern the possible relationship between children's diet and the metals found in children urine. With this aim in mind, a total of 120 voluntaries participated in a diet survey carried out in a school-aged population (age 6-11) from the Valencian region. In addition, twenty trace elements were analysed in children urine (arsenic, antimony, barium, beryllium, caesium, cadmium, cobalt, copper, lead, manganese, mercury, molybdenum, nickel, platinum, selenium, thallium, thorium, uranium, vanadium and zinc). Results permitted to compare metal levels in urine with metal levels of other biomonitoring studies to conclude that values, including ours, were similar in most studies. On the other hand, children who ate more vegetables had the highest values in cadmium, copper, molybdenum, antimony, thallium, vanadium, and zinc, while those who ate more fish reached higher values in mercury. Finally, children who ate more cereals and baked products had higher values in total arsenic.

Journal Article

Abstract  Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

Journal Article

Abstract  Naturally occurring arsenic in groundwater exceeding the limit for potability has been reported along the southern edge of the Cenozoic Duero Basin (CDB) near its contact with the Spanish Central System (SCS). In this area, spatial variability of arsenic is high, peaking at 241μg/L. Forty-seven percent of samples collected contained arsenic above the maximum allowable concentration for drinking water (10μg/L). Correlations of As with other hydrochemical variables were investigated using multivariate statistical analysis (Hierarchical Cluster Analysis, HCA and Principal Component Analysis, PCA). It was found that As, V, Cr and pH are closely related and that there were also close correlations with temperature and Na+. The highest concentrations of arsenic and other associated Potentially Toxic Geogenic Trace Elements (PTGTE) are linked to alkaline NaHCO3waters (pH≈9), moderate oxic conditions and temperatures of around 18°C-19°C. The most plausible hypothesis to explain the high arsenic concentrations is the contribution of deeper regional flows with a significant hydrothermal component (cold-hydrothermal waters), flowing through faults in the basement rock. Water mixing and water-rock interactions occur both in the fissured aquifer media (igneous and metasedimentary bedrock) and in the sedimentary environment of the CDB, where agricultural pollution phenomena are also active. A combination of multivariate statistical tools and hydrochemical analysis enabled the distribution pattern of dissolved As and other PTGTE in groundwaters in the study area to be interpreted, and their most likely origin to be established. This methodology could be applied to other sedimentary areas with similar characteristics and problems.

Journal Article

Abstract  An estimated 11 million people in the US have home wells with unsafe levels of hazardous metals and nitrate. The national scope of the health risk from consuming this water has not been assessed as home wells are largely unregulated and data on well water treatment and consumption are lacking. Here, we assessed health risks from consumption of contaminated well water on the Crow Reservation by conducting a community-engaged, cumulative risk assessment. Well water testing, surveys and interviews were used to collect data on contaminant concentrations, water treatment methods, well water consumption, and well and septic system protection and maintenance practices. Additive Hazard Index calculations show that the water in more than 39% of wells is unsafe due to uranium, manganese, nitrate, zinc and/or arsenic. Most families' financial resources are limited, and 95% of participants do not employ water treatment technologies. Despite widespread high total dissolved solids, poor taste and odor, 80% of families consume their well water. Lack of environmental health literacy about well water safety, pre-existing health conditions and limited environmental enforcement also contribute to vulnerability. Ensuring access to safe drinking water and providing accompanying education are urgent public health priorities for Crow and other rural US families with low environmental health literacy and limited financial resources.

DOI
Journal Article

Abstract  Ambient air pollution in China has a significant spatial variation due to the uneven development and different energy structures. This study characterized ambient pollution of parent and nitrated polycyclic aromatic hydrocarbons (PAHs) through a 1-year measurement in two megacities in southwest China where regional PM2.5 levels were considerably lower than other regions. Though the annual average BaP levels in both two cities were below the national standard of 1.0 ng/m(3), however, by taking other PAH5 into account, PAH5 pollution were serious as indicated by high BaP equivalent concentrations (BaPEQ) of 3.8 +/- 2.6 and 4.4 +/- 1.9 ng/m(3), respectively. Risk assessment would be underestimated by nearly an order of magnitude if only using BaP in risk assessment compared to the estimation based on 26 PAHs including 16 priority and 10 non-priority isomers targeted in this study. Estimated incremental lifetime cancer risks (ILCR) were comparable at two cities, at about 330-380 persons per one million, even though the mass concentrations were significantly different. Nitrated PAHs showed distinct temporal and site differences compared to the parent PAHs. High cancer risks due to inhalation exposure of PAHs and their polar derivatives in the low PM2.5-pollution southwest China suggest essential and effective controls on ambient PAHs pollution in the region, and controls should take potential health risks into account instead of solely mass concentration. (C) 2017 Elsevier Ltd. All rights reserved.

Journal Article

Abstract  In this paper, we report the development of an environmental friendly process to decontaminate uranium-containing ores and nuclear wastes by using non-fluorinated ionic liquids (ILs). The main advantages of this extraction process are the absence of any organic diluent and extra extraction agents added to the organic phase. Moreover, the process is cost-effective and maybe applied as a sustainable hydrometallurgical method to recover uranium. The distribution ratio (DU) and the extraction efficiency (%E) of uranium(VI) (UO22+) were found to be dependent on the acidity of the aqueous phase, the extraction time, the alkyl chain length in the ILs, the concentration of the aqueous feed and molar quantity of ILs. The DUvalue is higher than 600 and the %E is equal to 98.6% when [HNO3]=7M. The extraction reactions follows a neutral partition or ionic exchange mechanism depending on nitric acid concentration. The nature of bonding in the extracted complexes was investigated by spectroscopic techniques. The potential use of Mor1-8-OP for the separation of UO22+from a mixture containing transition metal ions Mn+was also examined. The UO22+ions were separated and extracted efficiently. These ILs are promising candidates for the recovery and separation of uranium.

Journal Article

Abstract  Unprecedented silyl‐phosphino‐carbene complexes of uranium(IV) are presented, where before all covalent actinide–carbon double bonds were stabilised by phosphorus(V) substituents or restricted to matrix isolation experiments. Conversion of [U(BIPMTMS)(Cl)(μ‐Cl)2Li(THF)2] (1, BIPMTMS=C(PPh2NSiMe3)2) into [U(BIPMTMS)(Cl){CH(Ph)(SiMe3)}] (2), and addition of [Li{CH(SiMe3)(PPh2)}(THF)]/Me2NCH2CH2NMe2 (TMEDA) gave [U{C(SiMe3)(PPh2)}(BIPMTMS)(μ‐Cl)Li(TMEDA)(μ‐TMEDA)0.5]2 (3) by α‐hydrogen abstraction. Addition of 2,2,2‐cryptand or two equivalents of 4‐N,N‐dimethylaminopyridine (DMAP) to 3 gave [U{C(SiMe3)(PPh2)}(BIPMTMS)(Cl)][Li(2,2,2‐cryptand)] (4) or [U{C(SiMe3)(PPh2)}(BIPMTMS)(DMAP)2] (5). The characterisation data for 3–5 suggest that whilst there is evidence for 3‐centre P−C−U π‐bonding character, the U=C double bond component is dominant in each case. These U=C bonds are the closest to a true uranium alkylidene yet outside of matrix isolation experiments.

  • <<
  • 1 of 400
  • >>
Filter Results