Expanded PFAS SEM (formerly PFAS 430)

Project ID

2875

Category

PFAS

Added on

Oct. 28, 2019, 6:18 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Some perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad coexisting distribution in humans and the environment. Our aim was to investigate the individual and joint effects of PFAAs on cellular viability of a human liver cell line (HL-7702) using the MTT assay. Equipartition ray design and equivalent-effect concentration ratio (EECR) mixtures were used to investigate the binary and multiple effects of PFAAs, respectively. All tested PFAAs mixtures and the individuals (except perfluorododecanoic acid (PFDoDA) and perfluorotetradecanoic acid (PFTeDA)) showed obvious non-monotonic J-shaped concentration-response curves (CRC) on HL-7702. The inhibitory effect of individual PFAAs increased with the elongation of the carbon chain and was dominated by their molecular volume. The three binary mixtures (PFOA/S, PFHxA/S and PFBA/S) showed that synergistic effects occurred under effective inhibitory concentrations (IC) of IC0, IC10, and IC50 in mixtures, while for IC-20 the synergistic effect only occurred under higher PFSA proportion in mixtures. Furthermore, EECR mixtures of the nine individual PFAAs with J-shaped CRC also showed synergistic effects. However, mixtures of the eleven individual PFAAs including those with S-shaped CRC resulted in partial addition effects on HL-7702. Our results indicated that the individual stimulatory responses of HL-7702 to PFAA may produce adverse effects in mixtures at relevant dose levels.

Journal Article

Abstract  Adsorption is considered as an effective method to remove perfluorinated compounds (PFCs) from aqueous solution. In this study, an aminated rice husk (RH) adsorbent was successfully prepared through surface-initiated atom transfer radical polymerization (ATRP) and subsequent amination reaction, and it was used to remove perfluorooctanoate (PFOA), perfluorobutanoic acid (PFBA) and perfluorooctane sulfonate (PFOS) from aqueous solution. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) analysis verified the presence of grafted polymer brushes and amine groups on the RH surface. The zero point of zeta potential of aminated RH was 8.5, which facilitated the sorption of anionic PFCs on the positively charged adsorbent at pH below 8.5. The sorption equilibria of PFOA, PFBA and PFOS were achieved within 5 h, 3 h and 9 h, respectively, faster than the reported porous adsorbents. Sorption isotherms showed that the adsorption capacities of PFOA, PFBA and PFOS on the aminated RH at pH 5.0 were 2.49, 1.70 and 2.65 mmol g(-1), respectively. Sorption behavior and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the electrostatic and hydrophobic interactions were involved in the sorption process, and the micelles and hemi-micelles of PFOA and PFOS may form on the adsorbent surface.

Journal Article

Abstract  The 6:2 FTOH [F(CF(2))(6)CH(2)CH(2)OH] is a major raw material being used to replace 8:2 FTOH [F(CF(2))(8)CH(2)CH(2)OH] to make FTOH-based products for industrial and consumer applications. A novel aerobic sediment experimental system containing 20 g wet sediment and 30 mL aqueous solution was developed to study 6:2 FTOH biotransformation in river sediment. 6:2 FTOH was dosed into the sediment to follow its biotransformation and to analyze transformation products over 100 d. The primary 6:2 FTOH biotransformation in the aerobic sediment system was rapid (T(1/2)<2d). 5:3 acid [F(CF(2))(5)CH(2)CH(2)COOH] was observed as the predominant polyfluorinated acid on day 100 (22.4 mol%), higher than the sum of perfluoropentanoic acid (10.4 mol%), perfluorohexanoic acid (8.4 mol%), and perfluorobutanoic acid (1.5 mol%). Perfluoroheptanoic acid was not observed during 6:2 FTOH biotransformation. The 5:3 acid can be further degraded to 4:3 acid [F(CF(2))(4)CH(2)CH(2)COOH, 2.7 mol%]. This suggests that microbes in the river sediment selectively degraded 6:2 FTOH more toward 5:3 and 4:3 acids compared with soil. Most of the observed 5:3 acid formed bound residues with sediment organic components and can only be quantitatively recovered by post-treatment with NaOH and ENVI-Carb™ carbon. The 6:2 FTCA [F(CF(2))(6)CH(2)COOH], 6:2 FTUCA [F(CF(2))(5)CF=CHCOOH], 5:2 ketone [F(CF(2))(5)C(O)CH(3)], and 5:2 sFTOH [F(CF(2))(5)CH(OH)CH(3)] were major transient intermediates during 6:2 FTOH biotransformation in the sediment system. These results suggest that if 6:2 FTOH or 6:2 FTOH-based materials were released to the river or marine sediment, poly- and per-fluorinated carboxylates could be produced.

Journal Article

Abstract  Perfluorinated compounds (PFCs) can be detected worldwide in both, soil and water. In order to study the leaching behavior of this heterogeneous group of compounds in soil, flow-through column experiments have been conducted. Ten perfluoro carboxylates and four perfluoro sulfonates ranging from C4 to C14 in chain length, and contaminated sewage sludge, have been used to spike a standard soil. The aqueous column effluent was analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS) with direct injection. The observed percolation velocity seems to be strongly correlated with the length of the perfluorinated chain. Other factors that additionally contribute to the leaching behavior are the functional group of the PFC, the organic carbon content of the soil and the presence of other adsorbates. A mass balance calculation showed that perfluorobutanoic acid can adsorb strongly to the soil, when no PFC with longer carbon chain are present. Only about 60% of the added perfluorobutanoic acid could be detected in the percolate water. The missing amount started to elute again when longer chain PFC or stearate were added to the soil. Thus it would appear that larger and more lipophilic molecules can displace shorter PFC from their binding sites in the soil. The results of a monitoring study using 32 surface water samples and 150 groundwater samples confirm that the PFC with the highest concentrations in groundwater are the short chain PFC with less than 7 (fluorinated) carbon atoms. The dominating PFC in surface waters are perfluorooctanoic acid and perfluorooctane sulfonic acid.

Journal Article

Abstract  The polyfluorinated carboxylic acids 5:3 acid (C(5)F(11)CH(2)CH(2)CO(2)H) and 7:3 acid (C(7)F(15)CH(2)CH(2)CO(2)H) are major products from 6:2 FTOH (C(6)F(13)CH(2)CH(2)OH) and 8:2 FTOH (C(8)F(17)CH(2)CH(2)OH) aerobic biotransformation, respectively. The 5:3 and 7:3 acids were dosed into domestic WWTP activated sludge for 90 d to determine their biodegradability. The 7:3 acid aerobic biodegradability was low, only 1.7 mol% conversion to perfluoroheptanoic acid (PFHpA), whereas no transformation was observed previously in soil. In stark contrast, 5:3 acid aerobic biodegradability was enhanced 10 times in activated sludge compared to soil. The 5:3 acid was not activated by acyl CoEnzyme A (CoA) synthetase, a key step required for further α- or ß-oxidation. Instead, 5:3 acid was directly converted to 4:3 acid (C(4)F(9)CH(2)CH(2)CO(2)H, 14.2 mol%) and 3:3 acid (C(3)F(7)CH(2)CH(2)CO(2)H, 0.9 mol%) via "one-carbon removal pathways". The 5:3 acid biotransformation also yielded perfluoropentanoic acid (PFPeA, 5.9 mol%) and perfluorobutanoic acid (PFBA, 0.8 mol%). This is the first report to identify key biotransformation intermediates which demonstrate novel one-carbon removal pathways with sequential removal of CF(2) groups. Identified biotransformation intermediates (10.2 mol% in sum) were 5:3 Uacid, α-OH 5:3 acid, 5:2 acid, and 5:2 Uacid. The 5:2 Uacid and 5:2 acid are novel intermediates identified for the first time which confirm the proposed pathways. In the biodegradation pathways, the genesis of the one carbon removal is CO(2) elimination from α-OH 5:3 acid. These results suggest that there are enzymatic mechanisms available in the environment that can lead to 6:2 FTOH and 5:3 acid mineralization. The dehydrogenation from 5:3 acid to 5:3 Uacid was the rate-limiting enzymatic step for 5:3 acid conversion to 4:3 acid.

Journal Article

Abstract  Perfluorinated compounds (PFCs) have attracted global concern due to their ubiquitous distribution and properties of persistence, bio accumulation and toxicity. The process of adsorption has been identified as an effective technique to remove PFCs in water. Different non ion-exchange polymeric adsorbents were tested with regard to their sorption kinetics and isotherms at low PFCs concentrations. Selected PFCs were perfluorobutanoic acid (PFBA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) and the tested polymers were three types of Dowex optopores (V-493, V503, and L493), Amberlite XAD-4, and Filtrasorb 400 (Granular Activated Carbon-GAC). We observed the selective adsorption of PFCs on synthetic polymers. For PFDA, Amberlite XAD-4 gave the Freundlich adsorption constant of 2,965 (microg PFCs/g sorbent)(microg PFCs/L)(-n), which was higher than that of GAC (121.89 (microg PFCs/g sorbent) (microg PFCS/L)(-n)). In the case of PFBA, GAC showed better performance (13.36) (microg PFCs/g sorbent) microg PFCS/L)(-n) than synthetic polymers (0.62-5.23) (microg PFCs/g sorbent) (microg PFCS/L)(-n). Adsorption kinetics of all adsorbents were well described (R2 = 0.85-1) by pseudo-second order kinetic model. Sorption capacity was influenced by initial PFCs concentration for all adsorbents. GAC reached the equilibrium concentration within 4 hours, Amberlite XAD 4 reached it within 10 hours and other polymers took more than 70 hours.

Journal Article

Abstract  The concentration profile of 40 polyfluoroalkyl substances (PFAS) in surface water along the River Rhine watershed from the Lake Constance to the North Sea was investigated. The aim of the study was to investigate the influence of point as well as diffuse sources, to estimate fluxes of PFAS into the North Sea and to identify replacement compounds of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). In addition, an interlaboratory comparison of the method performance was conducted. The PFAS pattern was dominated by perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) with concentrations up to 181 ng/L and 335 ng/L, respectively, which originated from industrial point sources. Fluxes of SigmaPFAS were estimated to be approximately 6 tonnes/year which is much higher than previous estimations. Both, the River Rhine and the River Scheldt, seem to act as important sources of PFAS into the North Sea.

Journal Article

Abstract  Perfluorinated surfactants of heptafluorobutylate and pentadecafluorooctanoate ions were adsorbed on an activated charcoal cartridge and decomposed with sodium biphenyl (SBP) reagent to form inorganic fluoride ion. The fluoride ion thus formed was determined by flow injection analysis (FIA) using quercetin-Zr complex as a fluorimetric reagent, where lambda(ex) and lambda(em) were 422 and 491 nm, respectively. The limit of detection for fluoride ion by the FIA system was developed to 1.1 x 10(-6)M (signal to noise ratio of three), when 50% (v/v) tetrahydrofuran (THF) was used as a dissolving solvent for quercetin. The perfluorinated surfactants in the sample solution were quantitatively adsorbed on the cartridge containing 100mg of activated charcoal and were decomposed with 0.5 mL of sodium biphenyl reagent after drying thoroughly by flowing through dry nitrogen gas. The fluoride ion formed was recovered with 3 mL of purified water as an eluent, and it was determined by the fluorimetric flow injection system. The blank fluorescence signal accompanied during the adsorption/decomposition on the cartridge was reduced by washing the activated charcoal with acetone. The blank signal was also observed from dimethoxyethane, which was used in sodium biphenyl reagent. When 600 mL sample solution was used and 200 times enrichment was applied, the heptafluorobutylate and pentadecafluorooctanoate ions at the concentrations of 2.1 microg L(-1) were quantitatively recovered as fluoride ion, and the limit of detections for the perfluorinated surfactants were 0.3 and 0.3 microgL(-1) for the two perfluorinated surfactants, respectively (3 sigma of the blank signal).

Journal Article

Abstract  To elucidate the relationship between peroxisome proliferation by perfluorinated compounds and oxidative DNA damage, perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA), perfluorobutyric acid (PFBA) and perfluorooctane (PFO) were administered to 6-week-old F-344 male rats. After a single intraperitoneal (i.p.) injection of PFOA, PFBA or PFO in corn oil at a dose of 100 mg/kg, significant increases of liver weight and 8-hydroxydeoxyguanosine (8-OH-dG) levels in liver DNA were observed in PFOA-treated rats. Oral administration of powdered diet containing 0.02% PFOA or 0.01% PFDA for 2 weeks resulted in significant increases of liver weight and 8-OH-dG levels in liver DNA in rats given both chemicals. On the other hand, no increase in 8-OH-dG levels in kidney DNA was found in either of the studies. Our results demonstrate that, as with other peroxisome proliferators (phthalic ester plasticizers and hypolipidemic drugs), PFOA and PFDA induced peroxisome proliferation also leads to organ specific oxidative DNA damage.

Journal Article

Abstract  Perfluorooctane sulfonate (PFOS) and other perfluorinated alkylated substances (PFAS) were determined in liver, kidney, muscle, brain, and blubber samples of 31 harbor porpoises (Phocoena phocoena relicta) of different age and sex stranded along the Ukrainian coast of the Black Sea. In all individuals and in all tissues, PFOS was the predominant PFAS, accounting for on average 90% of the measured PFAS load. PFOS concentrations were the highest in liver (327+/-351 ng/g wet wt) and kidney (147 +/-262 ng/g wet wt) tissue, and lower in blubber (18+/-8 ng/g wet wt), muscle (41+/-50 ng/g wet wt), and brain (24 +/-23 ng/g wetwt). No significant differences could be determined between males and females, nor between juvenile and adult animals (p > 0.05). Perfluorononanoic acid, perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid could be detected in liver tissue of approximately 25% of the individuals. Perfluorobutane sulfonate, perfluorobutanoic acid, and perfluorooctanoic acid were not detected in any of the porpoise livers. Although we investigated a potential intraspecies segregation according to the source of prey, using stable isotopes, no statistically significant correlation between PFOS concentrations and stable isotopes could be determined. It is, however, noteworthy that the contamination by PFOS in the Black Sea harbor porpoises is comparable to levels found in porpoises from the German Baltic Sea and from coastal areas near Denmark and, therefore, might pose a threat to this population.

DOI
Journal Article

Abstract  A pre-sampling isotope dilution-direct injection-liquid chromatography tandem mass spectrometry (DI-LC/MS/MS) analytical method for the analysis of perfluorinated compounds (PFCs) in water is presented. This pre-sampling isotope dilution method incorporates stable isotope internal standards (ISs) and surrogate recovery standards (SRSs) added to sample bottles prior to sample collection. Pre-sampling isotope dilution corrects for PFC adsorption losses and enables a simple quantitative DI-LC/MS/MS water method with a 28 day sample holding time. Method analytes include perfluorinated carboxylic acids (PFCAs) (C4-C12), perfluorinated sulfonic acids (PFSAs) (C4, C6, and C8), perfluorooctane sulfonamide (PFOSA), and four SRSs ([2,3,4-C-13(3)]PFBA, [1,2,3,4-C-13(4)]PFOA, [1,2,3,4-C-13(4)]PFOS, and [1,2-C-13(2)]PFUnA). At 28 day sample holding times, mean recoveries of laboratory reagent water samples (Milli-Q (TM) water containing hardness at 165 mg equivalent CaCO3 L-1) fortified with the PFC method analytes at 0.2-40 ng mL(-1) (0.1-1 ng mL(-1) SRSs) are 94.9-115% with relative standard deviations of 0.97-7.9%. At 28 day sample holding times in fortified laboratory reagent water samples, single laboratory lowest concentration minimum reporting levels of 0.010-0.020 ng mL(-1) (0.075 ng mL(-1) PFBA) are demonstrated for method analytes and SRSs. Method applications to synthetic chlorinated drinking water samples and three environmental sample matrices are presented that demonstrate method ruggedness. Mean recoveries of synthetic chlorinated drinking water samples fortified with the PFC method analytes at 0.1-10 ng mL(-1) and SRSs at 0.1-1 ng mL(-1) are 97.8-113% with relative standard deviations of 2.0-18%. Mean recoveries and relative standard deviations in environmental groundwater samples, production facility non-contact cooling water effluent samples, and production facility wastewater treatment effluent samples fortified with the PFC method analytes at 0.25-2.5 ng mL(-1), 0.25-10 ng mL(-1), 0.25-50 ng mL(-1) respectively and SRSs at 0.1 ng mL(-1) are 100 +/- 7.7% (RSD +/- 12%, PFBA +/- 23%), 100 +/- 5.5% (RSD +/- 11%), 100 +/- 5.2% (RSD +/- 11%) respectively. Excellent method correlation was obtained with USEPA Method 537 in a comparative analysis of synthetic chlorinated drinking water samples aged 7 days and fortified with C6-C12 PFCAs and C4, C6, and C8 PFSAs, and three SRSs [C-13(4)] PFOA, [C-13(2)] PFUnA, and [C-13(4)] PFOS at 0.1 ng mL(-1). The average absolute difference between the EPA Method 537 and DI-LC/MS/MS measurements for the method analytes and SRSs was 8%.

Journal Article

Abstract  We present a new candidate reference method for determining cortisol in serum. The method is based on isotope dilution-gas chromatography/mass spectrometry and makes use of derivatization with heptafluorobutyric anhydride and selected ion monitoring at m/z 489 and 491. A detection limit of 0.08 pmol (30 pg) was achieved. Twenty-four structurally related steroids were tested for interference and found negative. Verification of the analytical quality specifications was done from measurement in two laboratories of the certified reference materials 192 and 193 of the Bureau Communautaire de Référence and a number of commercial quality control materials. The maximum systematic error was estimated to be 1.0% and the mean imprecision was 1.0%. The total error was lower than 2.05%. The method was applied for target-setting in external quality assessment and internal accuracy control and for measurement of patient samples.

Journal Article

Abstract  Rats were treated for 5 to 14 days with perfluoroacetate, perfluorobutyrate and perfluorooctanoate. Alterations in hepatic morphology with special reference to the peroxisomal compartment were investigated by light and electron microscopy following cytochemical staining of catalase activity with the alkaline 3,3'-diaminobenzidine medium. All three compounds induced hepatomegaly and peroxisome proliferation. Perfluorobutyrate and perfluorooctanoate were found to be more active than perfluoroacetate. Perfluorooctanoate-induced peroxisome proliferation was more prevalent in centrilobular than in periportal hepatocytes. Peroxisomes in centrilobular liver cells frequently were of round shape, exhibited diameters of up to 1.5 microns and were predominantly located within smooth endoplasmic reticulum-glycogen areas. In periportal cells, however, clusters of polymorphous peroxisomes ranging from 250 to 1,100 nm in diameter were observed at the periphery of smooth endoplasmic reticulum-glycogen regions. Peroxisome proliferation was accompanied by a change of peroxisomal and mitochondrial enzyme activities, in particular an increase in peroxisomal palmitoyl-CoA oxidation. Significant alterations in the concentration of peroxisomal matrix and membrane polypeptides were also noted. Within the first 2 days, perfluorooctanoate treatment exerted a strong hypolipidemic activity and both compounds perfluorooctanoate and perfluorobutyrate raised the level of hepatic free acid-soluble CoA nearly 10-fold as compared with control livers. The results suggest perfluorinated carboxylic acids to be model substances suitable to correlate biochemical and morphological parameters with the zonal heterogeneity of the peroxisomal compartment in rat liver. Due to the manifold hepatic effects, contact of humans with perfluorinated carboxylic acids or their metabolic precursors may represent a severe health risk.

Journal Article

Abstract  The induction of peroxisome proliferation in rat liver was examined after administration of perfluoro-n-decanoic acid (PFDA, C10), perfluoro-n-octanoic acid (PFOA, C8), perfluoro-n-butyric acid (PFBA, C4), 1-H,1-H-pentadecafluoro-n-octanol (PFOL, C8) perfluorododecane (PFD, C12), and perfluorooctane (PFO, C8). The peroxisome proliferation in the liver was detected by the following methods; 1) measurement of liver weight, 2) assay of hepatic catalase activity, 3) analysis of 600 X g supernatant of liver homogenates by SDS-polyacrylamide gel electrophoresis to observe the induction of the bifunctional enoyl-CoA hydratase in peroxisomes (80K-protein) and 4) observation by electron microscopy. The oral administration of powdered chow containing 0.02%-PFOA and PFBA to male rats of the Sprague-Dawley strain for 2 weeks and the single intraperitoneal injection of corn oil mixed with PFDA, PFOA, and PFOL at the dose of 100 mg/kg induced peroxisome proliferation markedly. PFOL, which has two hydrogen atoms around the hydroxylated carbon, should be metabolized to PFOA, which is an active inducer. Perfluorinated paraffins, PFD and PFO, did not show any induction, indicating the importance of the carboxylic group in the molecule for the peroxisome proliferation. Although the participation of thyroid hormone cannot be excluded, PFOA appears to act directly on the liver.

Book/Book Chapter

Abstract  A method for determining isomers of diaminotoluene (25376458) was described. The method consisted of two procedures: procedure 1, which did not resolve the 2,4 and 2,5 isomers and procedure 2 which resolved all isomers. In procedure 1, 60 to 100 milligrams (mg) of sample were reacted with 1 milliliter (ml) trifluoroacetic-acid for 5 minutes, followed by reaction with 1ml trifluoroacetic-anhydride for 15 minutes. Ten microliters (microl) of sample was analyzed by a gas chromatograph (GC) using a column consisting of aluminum tubing packed with 2.0 percent neopentyl-glycol. In procedure 2, 60 to 100mg sample was shaken with chloroform, then reacted with trifluoroacetic-anhydride. The solution was then allowed to stand for 15 minutes. The solvent and excess reagent were evaporated in a stream of nitrogen. The sample was reconstituted by 1ml of acetone. A 5microl sample was injected into a GC equipped with a column consisting of aluminum tubing with 100 to 120 mesh Chromosorb. Repeated analyses of seven replicate samples of a synthetic sample according to procedure 1 produced a relative standard deviation of 0.7 to 8.4 percent. Analysis of 5 replicate samples of a crude product by procedure 2 had relative standard deviations of 0.6 to 7.7 percent for the 2,3, 3,4, 2,6, 2,4, and 2,5 isomers. The authors note that procedure 1 serves as an excellent method for quality control of factory grade material. Procedure 2 must be used when determining the 2,5 isomer is important.

Journal Article

Abstract  BACKGROUND: In toxicology studies, perfluorinated compounds affect fetal growth, development, viability, and postnatal growth. There are limited epidemiologic studies on child development.

METHODS: We recruited and evaluated 321 children who participated in the C8 Health Project, a 2005-06 survey in a mid-Ohio Valley community highly exposed to perfluorooctanoate (PFOA) through contaminated drinking water. We examined associations between measured childhood PFOA serum concentration and mother and teacher reports of executive function (Behaviour Rating Inventory of Executive Function), attention deficit hyperactivity disorder (ADHD)-like behaviour (Conner's ADHD Diagnostic and Statistical Manual of Mental Disorders IV Scales), and behavioural problems (Behaviour Assessment System for Children) assessed 3 to 4 years later at ages 6-12 years.

RESULTS: Overall, neither reports from mothers nor teachers provided clear associations between exposure and child behaviour. Mother reports, however, did suggest favourable associations between exposure and behaviour among boys and adverse associations among girls. On the composite scale from the Behaviour Rating Inventory of Executive Function (n = 318), PFOA exposure had a favourable association among boys (highest vs. lowest quartile β = -6.39; 95% confidence interval [CI] -11.43, -1.35) and an adverse association among girls (highest vs. lowest quartile β = 4.42; 95% CI -0.03, 8.87; interaction P = 0.01). Teacher reports (n = 189) replicated some, but not all of the sex interactions observed in mothers' reports.

CONCLUSIONS: Aggregate results did not suggest adverse effects of PFOA on behaviour, but sex-specific results raise the possibility of differing patterns by sex. Results are not consistent between mothers' and teachers' reports. Effect modification by sex may warrant further investigation.

Journal Article

Abstract  Phenylalkylamine derivatives, such as methamphetamine (MA), amphetamine (AM), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), phentermine (PT), fenfluramine (FFA) and phenmetrazine (PM), and ketamine (KT) are widely abused recreational or anorectic drugs in Korea and are regulated under the Controlled Substance Act in Korea. Phenylalkylamines and ketamine analysis is normally performed using both urine and hair samples but there is no established method for the simultaneous analysis of all these phenylalkylamines and ketamine in oral fluids. Oral fluid is easy to collect/handle and can provide an indication of recent drug abuse. In this study, to confirm the presence of phenylalkylamine derivatives and ketamine in oral fluid after screening with an immunoassay, an analytical method using automated solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) was developed and fully validated according to international guidelines. The applicability of the assay was demonstrated by analyzing of authentic oral fluid samples and the results of oral fluid analysis were compared with those in urine and hair to to evaluate the feasibility of oral fluid in forensic cases. The recovery of phenylalkylamines and ketamine from oral fluid collection devices was also assessed. Oral fluid specimens from 23 drug abuse suspects submitted by the police were collected using Salivette (Sarstedt, Nümbrecht, Germany), Quantisal (Immunalysis, Pomona, CA) or direct expectoration. The samples were screened using a biochip array analyzer (Evidence Investigator, Randox, Antrim, UK). For confirmation, the samples were analyzed by GC-MS in selected-ion monitoring (SIM) mode after extraction using automated SPE (RapidTrace, Zymark, MA, USA) with a mixed-mode cation exchange cartridge (CLEAN SCREEN, 130 mg/3 ml, UCT, PA, USA) and derivatization with trifluoroacetic anhydride (TFA). The results from the immunoassay were consistent with those from GC-MS. Twenty oral fluid samples gave positive results for MA, AM, PT and/or PM among the 23 cases, which gave positive results in urine and/or hair. Although large variations in the MA, AM, PT and PM concentrations were observed in three different specimens, the oral fluid specimen was useful for demonstrating phenylalkylamines and ketamine abuse as an alternative specimen for urine.

Journal Article

Abstract  The influence of salinity and organic matter on the distribution coefficient (K(d)) for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a brackish water-clay system was studied. The distribution coefficients (K(d)) for PFAs onto inorganic clay surfaces increased with salinity, providing evidence for electrostatic interaction for the sorption of PFAs, whereas the relationship between K(d) and organic carbon content (f(oc)) suggested that hydrophobic interaction is the primary driving force for the sorption of PFAs onto organic matter. The organic carbon normalized adsorption coefficient (K(oc)) of PFAs can be slightly overestimated due to the electrostatic interaction within uncoated inorganic surfaces. In addition, the dissolved organic matter released from coated clay particles seemed to solvate PFA molecules in solution, which contributed to a decrease in K(d). A positive relationship between K(d) and salinity was apparent, but an empirical relationship for the 'salting-out' effect was not evident. The K(d) values of PFAs are relatively small compared with those reported for persistent organic pollutants. Thus, sorption may not be a significant route of mass transfer of PFAs from water columns in estuarine environments. However, enhancement of sorption of PFAs to particulate matter at high salinity values could evoke potential risks to benthic organisms in estuarine areas.

Journal Article

Abstract  A simple gas chromatographic (GC) method has been developed to determine 2,4- and 2,6-diaminotoluenes in polyurethane foam. Diaminotoluenes were reacted with heptafluorobutyric anhydride in toluene, and the products, bis-heptafluorobutyrates, were determined by GC, using a 3% silicone OV-330 column. The 2,4- and 2,6-diaminotoluenes can be detected as heptafluorobutyryl derivatives by using an electron capture detector at levels of 5 and 2 pg, respectively. Finally, 2.7-3.0 micrograms/g of 2,4- and 1.3-1.9 micrograms/g of 2,6-diaminotoluene were detected in 3 commercial polyurethane foams.

DOI
Journal Article

Abstract  Perfluorinated compounds (PFCs) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have been detected in the environment, in biota and in humans. The exposure pathways of these chemicals to humans are unclear. Tap water and bottled water are two possible pathways of PFCs occurrence in human blood. The major objectives of the study were to identify the occurrences of PFCs in tap and bottled water and to evaluate conventional water treatment processes performance on removal of PFCs. Solid phase extraction coupled with HPLC-ESI-MS/MS were used for the analysis of ten PFCs. PFCs were detected in all tap water samples and bottled water samples. The average PFOS and PFOA concentrations in tap water were 0.17 and 3.58 ng l(-1), respectively. PFOS and PFOA were not similarly distributed in all areas in the city. PFCs concentrations were higher in bottled water than in tap water. Moreover, the current treatment processes were not effective in removing PFCs in aqueous phase. Nevertheless, PFCs in particulate phase were effectively removed by primary sedimentation and rapid sand filtration. Based on the guideline from the New Jersey Department of Environmental Protection, PFOA concentrations in tap water and bottled water found in Bangkok were not expected to cause any health risks.

Journal Article

Abstract  Accumulation of persistent organic pollutants (POPs) in wildlife may be influenced by the physical and biotic environment, and concentrations vary greatly among areas, seasons, and individuals. Different hypotheses about sources of variation in perfluoroalkyl substance (PFAS) concentrations were examined in eggs (n = 107) of tawny owls (Strix aluco) collected over a 24-yr period (1986-2009) in Norway. Predictor variables included the North Atlantic Oscillation (NAO), temperature, snow, food availability (vole abundance), and individual traits such as age, body condition, and clutch size. Concentrations of both perfluoro-octane sulfonate (PFOS) and perfluoroalkyl carboxylates (PFCAs) varied several fold in the population, both inter- and intra-annually. Moreover, individuals laid eggs with several times higher or lower PFAS concentrations within few years (1 yr-5 yr). After controlling for temporal trends (i.e., declining PFOS and increasing PFCA concentrations), both PFOS and PFCAs were positively associated to the winter NAO in the previous year (NAOy - 1 ), suggesting that atmospheric transport may be affecting the input of PFASs to the local ecosystem. Perfluoro-octane sulfonate was negatively related to temperature, but the pattern was complex as there was an interaction between temperature and the feeding conditions. The PFOS accumulation was highest in years with high vole abundance and low to medium temperatures. For PFCAs, there was an interaction between NAOy - 1 and feeding conditions, suggesting that strong air transport toward Norway and high consumption of voles led to a moderate increase in PFCA accumulation. The individual traits, however, had very little impact on the concentrations of PFASs in the eggs. The present study thus suggests that annual variation in environmental conditions influences the concentrations of PFASs in a terrestrial raptor such as the tawny owl. Environ Toxicol Chem 2014;9999:1-8. © 2014 SETAC.

Journal Article

Abstract  The concentrations of eighteen perfluorinated compounds (PFCs: C5-C14 carboxylates, C4, C6-C8 and C10 sulfonates and 3 sulfonamides) were determined in wastewater and sludge samples originating from two different wastewater treatment plants (WWTPs). The analytes were extracted by solid phase extraction (dissolved phase) or sonication followed by solid phase extraction (solid phase). Qualitative and quantitative analyses were performed by LC-MS/MS. According to the results, perfluoropentanoic acid (PFPeA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were dominant in wastewater and sludge samples from both plants. The average concentrations in the raw and treated wastewater ranged up to 75.7 ng L(-1) (perfluorotridecanoic acid, PFTrDA) and 76.0 ng L(-1) (PFPeA), respectively. Concentrations of most PFCs were higher in effluents than in influents, indicating their formation during wastewater treatment processes. In sewage sludge, the average concentrations ranged up to 6.7 ng g(-1) dry weight (PFOS). No significant seasonal variations in PFCs concentrations were observed, while higher concentrations of PFOA, PFOS and perfluorononanoic acid (PFNA) were determined in the WWTP receiving municipal and industrial wastewater. Significantly different distribution coefficient (Kd) values were determined for different PFCs and different type of sludge, ranging between 169 L kg(-1) (PFHxS) to 12,922 L kg(-1) (PFDA).

Journal Article

Abstract  OBJECTIVES: To develop a method to reconstruct exposure to tetrafluoroethylene (TFE) and ammonium perfluorooctanoate (APFO) in plants producing polytetrafluoroethylene (PTFE) in the absence of suitable objective measurements. These data were used to inform an epidemiological study being carried out to investigate possible risks in workers employed in the manufacture of PTFE and to study trends in exposure over time.

METHODS: For each plant, detailed descriptions of all occupational titles, including tasks and changes over time, were obtained during semi-structured interviews with key plant personnel. A semi-quantitative assessment method was used to assess inhalation exposure to TFE and inhalation plus dermal exposure to APFO. Temporal trends in exposure to TFE and APFO were investigated.

RESULTS: In each plant the highest exposures for both TFE and APFO occurred in the polymerisation area. Due to the introduction of control measures, increasing process automation and other improvements, exposures generally decreased over time. In the polymerisation area, the annual decline in exposure to TFE varied by plant from 3.8 to 5.7% and for APFO from 2.2 to 5.5%.

CONCLUSIONS: A simple method for assessing exposure was developed which used detailed process information and job descriptions to estimate average annual TFE and APFO exposure on an arbitrary semi-quantitative scale. These semi-quantitative estimates are sufficient to identify relative differences in exposure for the epidemiological study and should good data become available, they could be used to provide quantitative estimates for all plants across the whole period of operation.

Journal Article

Abstract  The purpose of this study is to create a new silk fibroin scaffold with sufficient three-dimensional morphology and porous structure for cartilage formation. We have applied sucrose particles sized around 300 to 500 pm as porogens compared to equal-sized salt particles. After the porogen was leached out with water, scaffolds were prepared with fibroin derived from sucrose/hexafluoroisopropanol (Su/H) or salt/water (Sa/W) based composites. A compression test indicated that the Sa/W fibroin was much harder than the Su/H fibroin, but a protease enzyme digested the Sa/W fibroin more quickly than Su/H fibroin. Rabbit ear chondrocytes were seeded onto the scaffolds for 4-8 week in vitro culture and histological analyses were performed. The distribution of cartilage formation in Safranin O staining was more homogenous in Su/H fibroin than that of Sa/W fibroin. The overall amount of cartilage was significantly better in the Su/H fibroin than that in the Sa/W fibroin. However, the inner structure of pore wall in the Sa/W fibroin was rough and microporous with cartilage matrix deposition, while that in the Su/H fibroin was thin and homogenous. Since mature cartilage gradually regenerates to fill the porous space, slowly degradable Su/H fibroin should be a better candidate for cartilage formation. (C) 2009, The Society for Biotechnology, Japan. All rights reserved.

  • <<
  • 2 of 400
  • >>
Filter Results