Third Biofuels Report to Congress

Project ID

2779

Category

Other

Added on

Nov. 21, 2018, 10:12 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs - side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10years (i.e., extensive sites). We assessed microbial community structure and composition using lipid analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.

DOI
Journal Article

Abstract  To manage lands locally for C sequestration and for emissions reductions, it is useful to have a system that can monitor and predict changes in soil C and greenhouse gas emissions with high spatial resolution. We are developing a C accounting framework that can estimate C dynamics and net emissions associated with changes in land management. One component of this framework integrates field measurements, inventory data, and remote sensing products to estimate changes in soil C and to estimate where these changes are likely to occur at a subcounty (30- by 30-m) resolution. We applied this framework component to a midwestern region of the United States that consists of 679 counties approximately centered around Iowa. We estimated the 1990 baseline soil C to a maximum depth of 3 m for this region to be 4117 Tg. Cumulative soil C accumulation of 70.3 Tg was estimated for this region between 1991 and 2000, of which 33.8 Tg is due to changes in tillage intensity. Without accounting for soil C loss following changes to more intensive tillage practices, our estimate increases to 45.0 Tg C. This difference indicates that on-site permanence of soil C associated with a change to less intensive tillage practices is approximately 75% if no additional economic incentives are provided for soil C sequestration practices. This C accounting framework offers a method to integrate inventory and remote sensing data on an annual basis and to transparently account for alternating annual trends in land management and associated C stocks and fluxes.

Journal Article

Abstract  Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.

DOI
Journal Article

Abstract  This paper reviews the current knowledge of microbial processes affecting C sequestration in agroecosystems. The microbial contribution to soil C storage is directly related to microbial community dynamics and the balance between formation and degradation of microbial byproducts. Soil microbes also indirectly influence C cycling by improving soil aggregation, which physically protects soil organic matter (SOM). Consequently, the microbial contribution to C sequestration is governed by the interactions between the amount of microbial biomass, microbial community structure, microbial byproducts, and soil properties such as texture, clay mineralogy, pore-size distribution, and aggregate dynamics. The capacity of a soil to protect microbial biomass and microbially derived organic matter (MOM) is directly and/or indirectly (i.e., through physical protection by aggregates) related to the reactive properties of clays. However, the stabilization of MOM in the soil is also related to the efficiency with which microorganisms utilize substrate C and the chemical nature of the byproducts they produce. Crop rotations, reduced or no-tillage practices, organic farming, and cover crops increase total microbial biomass and shift the community structure toward a more fungal-dominated community, thereby enhancing the accumulation of MOM. A quantitative and qualitative improvement of SOM is generally observed in agroecosystems favoring a fungal-dominated community, but the mechanisms leading to this improvement are not completely understood. Gaps within our knowledge on MOM-C dynamics and how they are related to soil properties and agricultural practices are identified.

Journal Article

Abstract  After decades of declining cropland area, the United States (US) experienced a reversal in land use/land cover change in recent years, with substantial grassland conversion to cropland in the US Midwest. Although previous studies estimated soil carbon (C) loss due to cropland expansion, other important environmental indicators, such as soil erosion and nutrient loss, remain largely unquantified. Here, we simulated the environmental impacts from the conversion of grassland to corn and soybeans for 12 US Midwestern states using the EPIC (Environmental Policy Integrated Climate) model. Between 2008 and 2016, over 2 Mha of grassland were converted to crop production in these states, with much less cropland concomitantly abandoned or retired from production. The net grassland-cropland conversion increased annual soil erosion by 7.9%, nitrogen (N) loss by 3.7%, and soil organic carbon loss by 5.6% relative to that of existing cropland, despite an associated increase in cropland area of only 2.5%. Notably, the above estimates represent the scenario of converting unmanaged grassland to tilled corn and soybeans, and impacts varied depending upon crop type and tillage regime. Corn and soybeans are dominant biofuel feedstocks, yet the grassland conversion and subsequent environmental impacts simulated in this study are likely not attributable solely to biofuel-driven land use change since other factors also contribute to corn and soybean prices and land use decisions. Nevertheless, our results suggest grassland conversion in the Upper Midwest has resulted in substantial degradation of soil quality, with implications for air and water quality as well. Additional conservation measures are likely necessary to counterbalance the impacts, particularly in areas with high rates of grassland conversion (e.g. the Dakotas, southern Iowa).

DOI
Journal Article

Abstract  The U.S. Department of Agriculture’s (USDA) Cropland Data Layer (CDL) is a 30 m resolution crop-specific land cover map produced annually to assess crops and cropland area across the conterminous United States. Despite its prominent use and value for monitoring agricultural land use/land cover (LULC), there remains substantial uncertainty surrounding the CDLs’ performance, particularly in applications measuring LULC at national scales, within aggregated classes, or changes across years. To fill this gap, we used state- and land cover class-specific accuracy statistics from the USDA from 2008 to 2016 to comprehensively characterize the performance of the CDL across space and time. We estimated nationwide area-weighted accuracies for the CDL for specific crops as well as for the aggregated classes of cropland and non-cropland. We also derived and reported new metrics of superclass accuracy and within-domain error rates, which help to quantify and differentiate the efficacy of mapping aggregated land use classes (e.g., cropland) among constituent subclasses (i.e., specific crops). We show that aggregate classes embody drastically higher accuracies, such that the CDL correctly identifies cropland from the user’s perspective 97% of the time or greater for all years since nationwide coverage began in 2008. We also quantified the mapping biases of specific crops throughout time and used these data to generate independent bias-adjusted crop area estimates, which may complement other USDA survey- and census-based crop statistics. Our overall findings demonstrate that the CDLs provide highly accurate annual measures of crops and cropland areas, and when used appropriately, are an indispensable tool for monitoring changes to agricultural landscapes.

DOI
Journal Article

Abstract  The use of the perennial grain intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey) may have the potential to sustain soil health and fertility through the development of an extensive root system. However, references are scarce to demonstrate its potential influence in a context of a limited perennial grain growth phase, integrated into annual grain crops succession. This study aims at determining how early a perennial crop rooting system differs from that of an annual crop through root development and root traits and microbial indicators. Our results indicate that the two-year-old intermediate wheatgrass promotes a denser and deeper rooting system with proportionally more root biomass and length deeper in the soil profile. From the first growing season, the perennial grain demonstrated a suite of root traits typical of a more resource-conservative strategy, and more belowground-oriented resource allocation. Soil fungal biomass indicators were enhanced. Arbuscular mycorrhizal fungi (AMF) indicators were notably found to be improved at 1 m depth during the second growing season. This study provides evidence that grain-based agriculture can benefit from the potential of deeper and long-lived root systems of intermediate wheatgrass to manage soils. The periodic use of a short-term perennial phase in the crop rotation has the potential to improve soil functioning in the long term.

DOI
Journal Article

Abstract  Cover crop (CC) cultivation can improve crop yield, soil and environmental quality. Cover crops are multifunctional and contribute to soil quality by improving soil physical, chemical and biological properties. The crops also enhance organic matter and increase nutrient release, suppress weeds, and control pests. There is a need to continually explore and appropriately manage CC utilization to obtain their full benefits. This paper reviews literature on the impacts and benefits of CCs on soil quality in different cropping systems in terms of species selection, termination stage and termination methods.

DOI
Journal Article

Abstract  The aim of this study was to assess the effect of a three-year application of digestate from an agricultural biogas plant on the physicochemical properties of highly acidic pHKCl 4.4 ± 0.23, silty loam soils with low macronutrient content and on the yield and nutritional value of switchgrass (Panicum virgatum L.) biomass harvested for green fodder. The experiment included the following treatments: (1) O (control)—no fertilisation, (2) NPK—mineral fertilisation with (in kg ha−1) 150 N, 53.0 P and 105 K, (3) biogas digestate at 30 m3 ha−1 and (4) biogas digestate at 60 m3 ha−1. The higher application rate of biogas digestate significantly reduced soil acidity to pHKCl 4.9 ± 0.18 and improved its sorption properties. It also increased the soil organic matter content from 5.6 ± 0.21 to 6.4 ± 0.22 g Corg kg−1 and of K and Zn. The higher level of biogas digestate significantly increased switchgrass yield to 5.15 ± 0.26 t ha−1. The lower application rate of biogas digestate resulted in forage yield of 4.30 ± 0.20 t ha−1 comparable to that obtained after mineral fertilisation (4.33 ± 0.22 t ha−1). Following application of mineral fertilisers and the higher level of biogas digestate, the number of panicles per plant (150 ± 2.49–157 ± 0.6.17), panicle height (107 ± 1.98–114 ± 2.08), crude ash content (61.2 ± 0.43–65.5 ± 0.38) and protein content (106 ± 0.59–92 ± 1.11) in the switchgrass biomass from the first cut were higher than in the case of unfertilised soil (110 ± 3.81, 93 ± 1.32, 55.5 ± 0.40, 80.3 ± 0.37). The use of mineral fertilisers and biogas digestate increased the content of protein, P and Mg in biomass from the second cut. The results suggest that the use of digestate improved the physicochemical properties of highly acidic soil and increased the yield of switchgrass forage without diminishing its nutritional value.

Technical Report

Abstract  This is the first triennial Report to Congress required under Section 204 of the 2007 Energy Independence and Security Act (EISA). EISA increases the renewable fuel standards (RFS) to 36 billion gallons per year by 2022. Section 204 requires an assessment of environmental and resource conservation impacts of the RFS program. Air and water quality, soil quality and conservation, water availability, ecosystem health and biodiversity, invasive species, and international impacts are assessed, as well as opportunities to mitigate these impacts. Feedstocks compared include corn starch, soybeans, corn stover, perennial grasses, woody biomass, algae, and waste. Biofuels compared include conventional and cellulosic ethanol and biodiesel. This report is a qualitative assessment of peer-reviewed literature. This report concludes that (1) the extent of negative impacts to date are limited in magnitude and are primarily associated with the intensification of corn production; (2) whether future impacts are positive or negative will be determined by the choice of feedstock, land use change, cultivation and conservation practices; and (3) realizing potential benefits will require implementation and monitoring of conservation and best management practices, improvements in production efficiency, and implementation of innovative technologies at commercial scales. This report provides a foundation for comprehensive environmental assessments of biofuel production.

DOI
Technical Report

Abstract  BT16 is the third DOE-sponsored report to evaluate biomass resource availability in the conterminous United States. Each report addressed different goals. The 2005 Billion-Ton Study (BTS) was a strategic assessment of the potential biophysical availability of biomass. It identified the potential to produce more than one billion tons per year of agricultural and forest biomass sources—sufficient to produce enough biofuel to displace 30% of then-current petroleum consumption. However, this biophysical potential was not restricted by price, which is a key factor in the commercial viability of bioenergy and biofuels strategies. The 2011 U.S. Billion-Ton Update (BT2) evaluated the availability of biomass supply as a function of price. Employing an economic model to simulate potential biomass supply response to market demands, BT2 evaluated the potential economic availability of biomass feedstocks under a range of offered prices and yield scenarios between 2012 and 2030. It again projected the potential for more than 1 billion dry tons of biomass per year to be potentially available by 2030, assuming market prices of $60 per dry ton at the farmgate or roadside (i.e., after harvest, ready for delivery to a processing facility). This report (BT16) builds on previous research to address key questions: • What is the potential economic availability of biomass resources using the latest-available yield and cost data? • How does the addition of algae, miscanthus, eucalyptus, wastes, and other energy crops affect potential supply? • With the addition of transportation and logistics costs, what is the economic availability of feedstocks delivered to the biorefinery?

DOI
Journal Article

Abstract  Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states. Grain and stover yields from all sites as well as N, P, and K removal from 28 sites are summarized for nine longitude and six latitude bands, two tillage practices (conventional vs no tillage), two stover-harvest methods (machine vs calculated), and two crop rotations {continuous corn (maize) vs corn/soybean [Glycine max (L.) Merr.]}. Mean grain yields ranged from 5.0 to 12.0 Mg ha(-1) (80 to 192 bu ac(-1)). Harvesting an average of 3.9 or 7.2 Mg ha(-1) (1.7 or 3.2 tons ac(-1)) of the corn stover resulted in a slight increase in grain yield at 57 and 51 % of the sites, respectively. Average no-till grain yields were significantly lower than with conventional tillage when stover was not harvested, but not when it was collected. Plant samples collected between physiological maturity and combine harvest showed that compared to not harvesting stover, N, P, and K removal was increased by 24, 2.7, and 31 kg ha(-1), respectively, with moderate (3.9 Mg ha(-1)) harvest and by 47, 5.5, and 62 kg ha(-1), respectively, with high (7.2 Mg ha(-1)) removal. This data will be useful for verifying simulation models and available corn stover feedstock projections, but is too variable for planning site-specific stover harvest.

DOI
Journal Article

Abstract  Soil biota are a major component of agroecosystems, playing a decisive role in ecosystem services with synergistic effects on crop production. The conservation of their diversity has become a key component of a strategy towards agricultural sustainability. Over four years (2010-2014), under the "SOil Functional diversity as an Indicator of sustainable management of Agroecosystems" (SOFIA) project, we followed soil Collembola assemblages in response to the set-up of 5 cropping systems differing in crop rotations (annual or perennial), rate of N fertilization, and in tillage intensity (annual ploughing vs. shallow). Our results demonstrated that shifting from a conventional to conservation cropping system had a strong positive effect upon species richness and density of Collembola. Specifically, all treatments with a reduction in intensity of soil tillage fostered Collembola assemblages. At the end of our study, density and species richness were 3 to 4 times higher in reduced tillage (RT) than in conventional tillage (CT). Nevertheless, differentiation between the assemblages only occurred after 2 years but steadily increased until 4 years. At the last sampling date, all treatments contained significantly different Collembola assemblages (Anosim with Bray-Curtis distance). In parallel, we noticed shifts in the functional structure of the assemblages, even if globally, all life-forms were promoted under reduced tillage. However, contrary to our expectations, euedaphic Collembola were not promoted by restitution of crop residues. Our study over several years under field conditions showed that Collembola assemblages were more sensitive to tillage intensity than to either residue management or N fertilization. Clearly, conservation agriculture can foster one of the numerous services provided by the soil compartment, namely the soil biodiversity and therefore improve soil quality and health.

DOI
Journal Article

Abstract  Aim: Land use and land cover changes (LCLUC) are among the most important driving forces that alter terrestrial ecosystem functions and their feedbacks to climate systems, but reliable, spatially explicit datasets over century-long periods are still lacking for fine-scale earth system modeling. We aimed to combine multiple data sources and reconstruct long-term land use history in the continental U.S., examining cropland expansion and abandonment since 1850. Location: Conterminous U.S. Time period: 1850 to 2016. Major taxa studied: Cropland. Methods: Cropland density maps, displaying the distribution and percentage of cultivated land each year (excluding summer idle/fallow, cropland pasture), were reconstructed by harmonizing multiple sources of inventory data and high-resolution satellite images. The cropland data are freely available to the public. Results: In total, national cropland expansion was 104 million hectares (Mha) from 1850 to 2016 and peaked at about 127 Mha in 1920. Forests and shrublands were the dominant land cover types that croplands were converted from during 1850 to 1880, which may be primarily attributed to agriculture development in the northeast U.S. Croplands began to expand into grasslands from 1870 onwards and the encroached area dramatically increased, mainly due to cultivation development in the Great Plain and midwestern areas. In comparison, the area of abandoned cropland in the U.S. was 65 Mha during the study period. We found cropland abandonment mostly occurred in the central and southeast U.S., while cropland expansion was centered upon the midwestern states, central California, and the Mississippi Alluvial Plain. Main conclusions: Nationally, cultivated lands shifted from the eastern to midwestern U.S. during the study period, contributing to the increasingly important role of the Midwest in the rise of food and biofuel production, enhanced greenhouse gas (GHG) emissions, and high nitrogen loads into the Gulf of Mexico. Our cropland database is essential for modeling assessments of LCLUC impacts, crop production estimation and socioeconomic analysis.

DOI
Journal Article

Abstract  Cover crops (CCs) can provide multiple soil, agricultural production, and environmental benefits. However, a better understanding of such potential ecosystem services is needed. We summarized the current state of knowledge of CC effects on soil C stocks, soil erosion, physical properties, soil water, nutrients, microbial properties, weed control, crop yields, expanded uses, and economics and highlighted research needs. Our review indicates that CCs are multifunctional. Cover crops increase soil organic C stocks (0.1-1 Mg ha(-1) yr(-1)) with the magnitude depending on biomass amount, years in CCs, and initial soil C level. Runoff loss can decrease by up to 80% and sediment loss from 40 to 96% with CCs. Wind erosion potential also decreases with CCs, but studies are few. Cover crops alleviate soil compaction, improve soil structural and hydraulic properties, moderate soil temperature, improve microbial properties, recycle nutrients, and suppress weeds. Cover crops increase or have no effect on crop yields but reduce yields in water-limited regions by reducing available water for the subsequent crops. The few available studies indicate that grazing and haying of CCs do not adversely affect soil and crop production, which suggests that CC biomass removal for livestock or biofuel production can be another benefit from CCs. Overall, CCs provide numerous ecosystem services (i.e., soil, crop-livestock systems, and environment), although the magnitude of benefits is highly site specific. More research data are needed on the (i) multi-functionality of CCs for different climates and management scenarios and (ii) short-and long-term economic return from CCs.

DOI
Journal Article

Abstract  The increase in corn ethanol production has raised concerns about its indirect impacts on the expansion of cropland and implications for the environment and continues to be a controversial issue. In particular, land enrolled in the Conservation Reserve Program (CRP) declined by 7.2 million acres between 2007 and 2012 while corn ethanol production more than doubled. However, the extent to which this decline in CRP acres can be causally attributed to increased ethanol production is yet to be determined. Using a dynamic, partial equilibrium economic model for the US agricultural sector we find that doubling of com ethanol production over the 2007-2012 period (holding all else constant) led to the conversion of 3.2 million acres of unused cropland, including 1 million acres in CRP, to crop production. While substantial in magnitude, we find that these land use changes due to biofuel production accounted for only 16% and 13% of the total reduction in unused cropland and in CRP acres, respectively, that occurred over the 2007-2012 period. We also find that the land use change per million gallons of corn ethanol has declined non-linearly over time from 453 acres to 112 acres over the 2007-2012 period.

DOI
Journal Article

Abstract  Crop rotations (the practice of growing crops on the same land in sequential seasons) reside at the core of agronomic management as they can influence key ecosystem services such as crop yields, carbon and nutrient cycling, soil erosion, water quality, pest and disease control. Despite the availability of the Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the US on an annual basis, crop rotation patterns remain poorly mapped due to the lack of tools that allow for consistent and efficient analysis of multi-year CDLs. This study presents the Representative Crop Rotations Using Edit Distance (RECRUIT) algorithm, implemented as a Python software package, to select representative crop rotations by combining and analyzing multi-year CDLs. Using CDLs from 2010 to 2012 for 5 states in the US Midwest, we demonstrate the performance and parameter sensitivity of RECRUIT in selecting representative crop rotations that preserve crop area and capture land-use changes. Selecting only 82 representative crop rotations accounted for over 90% of the spatio-temporal variability of the more than 13,000 rotations obtained from combining the multi-year CDLs. Furthermore, the accuracy of the crop rotation product compared favorably with total state-wide planted crop area available from agricultural census data. The RECRUIT derived crop rotation product was used to detect land-use conversion from grassland to crop cultivation in a wetland dominated part of the US Midwest. Monoculture corn and monoculture soybean cropping were found to comprise the dominant land-use on the newly cultivated lands.

DOI
Journal Article

Abstract  Conservation tillage offers economic and soil quality benefits, yet conventional tillage remains the prevailing system in some regions. The purpose of this study is to identify the effect of profitability factors, risk attitudes, crop rotations, and other farmer and farm characteristics on farmers’ choices to use no-till (NT), strip-till (ST) and reduced/conventional tillage (RCT) in producing dryland corn, wheat, and soybean in Kansas. The results show that factors such as crop yields, risk aversion, crop insurance, baling and grazing of crop residue, crop acreage, and farmers’ approach to adopting new technologies are significant factors in farmers’ choice of tillage practice.

DOI
Journal Article

Abstract  Soil carbon (C) sequestration is one of three main approaches to carbon dioxide removal and storage through management of terrestrial ecosystems. Soil C sequestration relies of the adoption of improved management practices that increase the amount of carbon stored as soil organic matter, primarily in cropland and grazing lands. These C sequestering practices act by increasing the rate of input of plant-derived residues to soils and/or by reducing the rates of turnover of organic C stocks already in the soil. In addition to carbon dioxide removal potential, increases in soil organic matter/soil C content are highly beneficial from the standpoint of soil health and soil fertility. Practices to increase soil C stocks include well-known, proven techniques, or “best management practices” (BMP) for building soil carbon. A second category includes what we refer to as frontier technologies for which significant technological and/or economic barriers exist today, but for which further R&D and/or economic incentives might offer the potential for greater sequestration over the longer term. We reviewed published estimates of global soil carbon sequestration potential, representing the biophysical potential for managed cropland and/or grassland systems to store additional carbon assuming widespread (near complete) adoption of BMPs. The majority of studies suggests that 4–5 GtCO2/y as an upper limit for global biophysical potential with near complete adoption of BMPs. In the longer-term, if frontier technologies are successfully deployed, the global estimate might grow to 8 GtCO2/y. There is a strong scientific basis for managing agricultural soils to act as a significant carbon (C) sink over the next several decades. A two-stage strategy, to first incentivize adoption of well-developed, conventional soil C sequestering practices, while investing in R&D on new frontier technologies that could come on-line in the next 2–3 decades, could maximize benefits. Implementation of such policies will require robust, scientifically-sound measurement, reporting, and verification (MRV) systems to track that policy goals are being met and that claimed increases in soil C stocks are real.

Journal Article

Abstract  The Renewable Fuel Standard (RFS) specifies the use of biofuels in the United States and thereby guides nearly half of all global biofuel production, yet outcomes of this keystone climate and environmental regulation remain unclear. Here we combine econometric analyses, land use observations, and biophysical models to estimate the realized effects of the RFS in aggregate and down to the scale of individual agricultural fields across the United States. We find that the RFS increased corn prices by 30% and the prices of other crops by 20%, which, in turn, expanded US corn cultivation by 2.8 Mha (8.7%) and total cropland by 2.1 Mha (2.4%) in the years following policy enactment (2008 to 2016). These changes increased annual nationwide fertilizer use by 3 to 8%, increased water quality degradants by 3 to 5%, and caused enough domestic land use change emissions such that the carbon intensity of corn ethanol produced under the RFS is no less than gasoline and likely at least 24% higher. These tradeoffs must be weighed alongside the benefits of biofuels as decision-makers consider the future of renewable energy policies and the potential for fuels like corn ethanol to meet climate mitigation goals.

DOI
Journal Article

Abstract  Sustainable aboveground crop biomass harvest estimates for cellulosic ethanol production, to date, have been limited by the need for residue to control erosion. Recently, estimates of the amount of corn (Zea mays L.) stover needed to maintain soil carbon, which is responsible for favorable soil properties, were reported (5.25–12.50 Mg ha−1). These estimates indicate stover needed to maintain soil organic carbon, and thus productivity, are a greater constraint to environmentally sustainable cellulosic feedstock harvest than that needed to control water and wind erosion. An extensive effort is needed to develop advanced cropping systems that greatly expand biomass production to sustainably supply cellulosic feedstock without undermining crop and soil productivity.

DOI
Journal Article

Abstract  Biogas production is a well-established technology primarily for the generation of renewable energy and also for the valorization of organic residues. Biogas is the end product of a biological mediated process, the so called anaerobic digestion, in which different microorganisms, follow diverse metabolic pathways to decompose the organic matter. The process has been known since ancient times and was widely applied at domestic households providing heat and power for hundreds of years. Nowadays, the biogas sector is rapidly growing and novel achievements create the foundation for constituting biogas plants as advanced bioenergy factories. In this context, the biogas plants are the basis of a circular economy concept targeting nutrients recycling, reduction of greenhouse gas emissions and biorefinery purposes. This review summarizes the current state-of-the-art and presents future perspectives related to the anaerobic digestion process for biogas production. Moreover, a historical retrospective of biogas sector from the early years of its development till its recent advancements gives an outlook of the opportunities that are opening up for process optimisation.

Filter Results