Squalane

Project ID

2774

Category

OPPT

Added on

Nov. 13, 2018, 10:57 a.m.

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  In vivo irritant or corrosive effects of squalan were determined using EPA OPPTS 870.2500 guideline. The test item was applied on rabbit skin during 4h. The test sites were scored for dermal irritation at 60min after removal of wrappings and scored again at 24, 48 and 72h. The modied Primary Irritating Index is 0.22. In conclusion, in this study, the squalan is considered non-irritant.

Technical Report

Abstract  Biodegradability was conducted according to OECD guideline n°301B. Sample biodegradability was equal to 55.9% after 28 days and 66.3% after 36 days.

Journal Article

Abstract  Active oxygen has been implicated in the pathogenesis of Parkinson's disease (PD); therefore, antioxidants have attracted attention as a potential way to prevent this disease. Squalene, a natural triterpene and an intermediate in the biosynthesis of cholesterol, is known to have active oxygen scavenging activities. Squalane, synthesized by complete hydrogenation of squalene, does not have active oxygen scavenging activities. We examined the effects of oral administration of squalene or squalane on a PD mouse model, which was developed by intracerebroventricular injection of 6-hydroxydopamine (6-OHDA). Squalene administration 7 days before and 7 days after one 6-OHDA injection prevented a reduction in striatal dopamine (DA) levels, while the same administration of squalane enhanced the levels. Neither squalene nor squalane administration for 7 days changed the levels of catalase, glutathione peroxidase, or superoxide dismutase activities in the striatum. Squalane increased thiobarbituric acid reactive substances, a marker of lipid peroxidation, in the striatum. Both squalane and squalene increased the ratio of linoleic acid/linolenic acid in the striatum. These results suggest that the administration of squalene or squalane induces similar changes in the composition of fatty acids and has no effect on the activities of active oxygen scavenging enzymes in the striatum. However, squalane increases oxidative damage in the striatum and exacerbates the toxicity of 6-OHDA, while squalene prevents it. The effects of squalene or squalane treatment in this model suggest their possible uses and risks in the treatment of PD.

Journal Article

Abstract  Female mice were given 100 mg HCB/kg body weight i.p. and fed diets containing 0, 2.5, 5.0, and 7.5% of squalane. After 3 weeks samples of liver, blood and abdominal fat were analysed for HCB as well as for squalane. HCB concentrations were significantly lowered as compared to controls in all tissues and at all dietary concentrations of squalane to a maximum of about 36% in fat, 44% in liver and 47% in blood. The effect of squalane upon HCB concentrations was strongly dose dependent in abdominal fat. In contrast, no significant differences were seen with liver and blood between animals fed 5.0 or 7.5% of squalane. Squalane was detected in considerable amounts in the livers (50-100 ppm) but not in abdominal fat (less than 1 ppm) of mice fed squalane.

Journal Article

Abstract  Microfluidized squalene or squalane emulsions are efficient adjuvants, eliciting both humoral and cellular immune responses. Microfluidization stabilizes the emulsions and allows sterilization by terminal filtration. The emulsions are stable for years at ambient temperature and can be frozen. Antigens are added after emulsification so that conformational epitopes are not lost by denaturation and to facilitate manufacture. A Pluronic block copolymer can be added to the squalane or squalene emulsion. Soluble antigens administered in such emulsions generate cytotoxic T lymphocytes able to lyse target cells expressing the antigen in a genetically restricted fashion. Optionally a relatively nontoxic analog of muramyl dipeptide (MDP) or another immunomodulator can be added; however, the dose of MDP must be restricted to avoid systemic side effects in humans. Squalene or squalane emulsions without copolymers or MDP have very little toxicity and elicit potent antibody responses to several antigens in nonhuman primates. They could be used to improve a wide range of vaccines. Squalene or squalane emulsions have been administered in human cancer vaccines, with mild side effects and evidence of efficacy, in terms of both immune responses and antitumor activity.

Journal Article

Abstract  Among several bacterial species belonging to the general Gordonia, Mycobacterium, Micromonospora, Pseudomonas, and Rhodococcus, only two mycobacterial isolates, Mycobacterium fortuitum strain NF4 and the new isolate Mycobacterium ratisbonense strain SD4, which was isolated from a sewage treatment plant, were capable of utilizing the multiply branched hydrocarbon squalane (2,6,10,15,19, 23-hexamethyltetracosane) and its analogous unsaturated hydrocarbon squalene as the sole carbon source for growth. Detailed degradation studies and high-pressure liquid chromatography analysis showed a clear decrease of the concentrations of squalane and squalene during biomass increase. These results were supported by resting-cell experiments using strain SD4 and squalane or squalene as the substrate. The degradation of acyclic isoprenoids and alkanes as well as of acids derived from these compounds was also investigated. Inhibition of squalane and squalene degradation by acrylic acid indicated the possible involvement of beta-oxidation in the degradation route. To our knowledge, this is the first report demonstrating the biodegradation of squalane by using defined axenic cultures.

WoS
Journal Article

Abstract  Squalane and Squalene have been identified as natural components of human sebum. Both ingredients are used in a variety of cosmetics at concentrations ranging from 5 0.1 to > 504b. Animal studies indicate Squalene is slowly absorbed through the skin, while both compounds are poorly absorbed from the gastrointestinal tract. The acute animal toxicity of these ingredients by all routes is low. Both compounds are nonirritants to rabbit skin and eye at 100% concentration. Formulations containing Squalene indicate it is not a significant human skin irritant or sensitizer. limited contact sensitization tests indicate Squalene is not a significant contact allergen or irritant. It is concluded that both Squalane and Squalene are safe as cosmetic ingredients in the present practices of use and concentration.

DOI
Journal Article

Abstract  Production of biosurfactants by acidophilic mycobacteria was demonstrated in the course of aerobic degradation of hydrocarbons (n-tridecane, n-tricosane, n-hexacosane, model mixtures of D-14-D-17, D(12)aEuro'D-19, and D-9-D-21 n-alkanes, 2,2,4,4,6,8,8-heptamethylnonane, squalane, and butylcyclohexane) and their complex mixtures (hydrocarbon gas condensate, kerosene, black oil, and paraffin oil) under extremely acidic conditions (pH 2.5). When grown on hydrocarbons, the studied bacterial culture AG(S10) caused a decrease in the surface and interfacial tension of the solutions (to the lowest observed values of 26.0 and 1.3 mN/m, respectively) compared to the bacteria-free control. The rheological characteristics of the culture changed only when mycobacteria were grown on hydrocarbons. Neither the medium nor the cell-free culture liquid had the surfactant activity, which indicated formation of an endotype biosurfactant by mycobacteria. Biodegradation of n-alkanes was accompanied by an increase in cell numbers, surfactant production, and changes in the hydrophobicity of bacterial cell surface and in associated phenomena of adsorption and desorption to the hydrocarbon phase. Research on AGS10 culture liquids containing the raw biosurfactant demonstrated the preservation of its activity within a broad range of pH, temperature, and salinity.

Journal Article

Abstract  An accurate description of the evolution of organic aerosol in the Earth's atmosphere is essential for climate models. However, the complexity of multiphase chemical and physical transformations has been challenging to describe at the level required to predict aerosol lifetimes and changes in chemical composition. In this work a model is presented that reproduces experimental data for the early stages of oxidative aging of squalane aerosol by hydroxyl radical (OH), a process governed by reactive uptake of gas phase species onto the particle surface. Simulations coupling free radical reactions and Fickian diffusion are used to elucidate how the measured uptake coefficient reflects the elementary steps of sticking of OH to the aerosol as a result of a gas-surface collision, followed by very rapid abstraction of hydrogen and subsequent free radical reactions. It is found that the uptake coefficient is not equivalent to a sticking coefficient or an accommodation coefficient: it is an intrinsically emergent process that depends upon particle size, viscosity, and OH concentration. An expression is derived to examine how these factors control reactive uptake over a broad range of atmospheric and laboratory conditions, and is shown to be consistent with simulation results. Well-mixed, liquid behavior is found to depend on the reaction conditions in addition to the nature of the organic species in the aerosol particle.

DOI
Journal Article

Abstract  We performed several test methods for safety evaluation of cosmetic ingredients and products. Now we chose guinea pig closed patch test method. This study were performed in the 3 different laboratories. The test mamterials were propylene glycol, 1, 3-butylene glycol, glycerin, liquid paraffin, squalane, and pristane. We chose 100% propylene glycol and pristane as positive control, and distilled water as negative control. We performed this test with the same procedure in each laboratory. The results of this study were as following: (1) In three polyols, only 100% propylene glycol reacted but 1, 3-butylene glycol and glycerin showed no reactions. (2) In three hydrocarbons, the order of positive rate was pristane

DOI
Journal Article

Abstract  As the safety evaluation method of cosmetic ingredients and products, we performed human patch tests. The test materials were propylene glycol, 1, 3-butylene glyool, glycerirl, pristane, Iiquid paraffin and squalane We chose propylene glycol and pristane as positive control, and distilled water as negative control. The members of this study were 3 dermatologists in one dermatological office and 2 universities, and 9 researchersin the different cosmetic companies. We performed the tests with the same procedure in each laboratory We could obtain the same results about the order of test materialspositive rates. But test seasons, especially high temperature and high humidity influenced on the reactions of test materials. We have to take a control material when we are going to test the skin irritancy of some chemicals using closed patch test method.

WoS
Journal Article

Abstract  A biochemical method was employed to study the response of rabbit skin to isopropyl myristate, squalane, and decane. The results showed that decane damaged the skin so severely that the biosyntheses of lipids, RNA and DNA were reduced markedly for the first 3 days after application, but increased rapidly after that due to the repair. The effect of squalane was found to be weaker than that of isopropyl myristate, though both oils induced the stimulation of biosynthese in the epidermis. The magnitude of the biochemical effects of the 3 oils on the skin was increased in the order of squalane, isopropyl myristate and decane, which was consistent with the results of macroscopic and histological observations. From the profiles of the effects, it is postulated that the repairing processes are controlled by some feedback mechanisms.

Journal Article

Abstract  Here we report a new method for measuring the heterogeneous chemistry of sub-micron organic aerosol particles using a continuous flow stirred tank reactor. This approach is designed to quantify the real time heterogeneous kinetics, using a relative rate method, under conditions of low oxidant concentration and long reaction times that more closely mimic the real atmosphere than the conditions used in a typical flow tube reactor. A general analytical expression, which couples the aerosol chemistry with the flow dynamics in the chamber is developed and applied to the heterogeneous oxidation of squalane particles by hydroxyl radicals (OH) in the presence of O(2). The particle phase reaction is monitored via photoionization aerosol mass spectrometry and yields a reactive uptake coefficient of 0.51 +/- 0.10, using OH concentrations of 1-7 x 10(8) molecule cm(-3) and reaction times of 1.5-3 h. In general, this approach provides a new way to connect the chemical aging of organic particles measured at short reaction times and high oxidant concentrations in flow tubes with the long reaction times and low oxidant conditions in smog chambers and the real atmosphere.

Journal Article

Abstract  In the previous papers, we demonstrated, by using rats, that squalane (2,6,10,15,19,23-hexamethyltetracosane) could stimulate the fecal excretion of 2,3,4,7,8-pentachlorodibenzofuran, which was regarded as the most important etiologic agent of yusho among PCB and PCDF congeners found in the causal rice oil. We also reported that, in rats, squalane was not essentially absorbed from the gastrointestinal tract, and did not show any appreciable side effects during the 3-month treatment. In the present paper, we have investigated the distribution, excretion and subacute toxicity of squalane in beagle dogs. The fecal excretion of squalane accounted for about 83% of dose during the initial 2 days after administration at a single oral dose of 1,200 mg/kg to male dogs. On day 3, absorbed squalane was mostly distributed to the hair and the skin, and the concentrations in these tissues were decreased on day 6. These results suggested that most of squalane administered orally was not absorbed from the gastrointestinal tract, but a part was absorbed and excreted through the hair. In addition, squalane distributed into the liver was found to be eliminated rather slowly. A long-term (13-week) treatments with squalane orally at doses of 400 mg/kg/day or 1,200 mg/kg/day in male and female dogs, resulted also in accumulation of squalane in the liver at a level of about 3% (400 mg/kg) or about 6% (1,200 mg/kg) of the daily dose. This accumulation of squalane in the liver was highest among all the tissues. Nevertheless, no appreciable toxic signs were observed in the serum biochemical tests and the hepatic functional test for squalane groups. Therefore, squalane accumulating in the liver, did not seem to disturb the hepatic physiological functions. It was suggested also in a long-term treatment that the skin and the hair played the most important role in the elimination of squalane. In conclusion, the present studies on subacute toxicity tests suggested that squalane did not give any significant toxic effects on dogs as well as rats.

Journal Article

Abstract  The particle/gas partition coefficient Kp is an important parameter affecting the fate and transport of indoor semivolatile organic compounds (SVOCs) and resulting human exposure. Unfortunately, experimental measurements of Kp exist almost exclusively for atmospheric polycyclic aromatic hydrocarbons, with very few studies focusing on SVOCs that occur in indoor environments. A specially designed tube chamber operating in the laminar flow regime was developed to measure Kp of the plasticizer di-2-ethylhexyl phthalate (DEHP) for one inorganic (ammonium sulfate) and two organic (oleic acid and squalane) particles. The values of Kp for the organic particles (0.23 ± 0.13 m3/μg for oleic acid and 0.11 ± 0.10 m3/μg for squalane) are an order of magnitude higher than those for the inorganic particles (0.011 ± 0.004 m3/μg), suggesting that the process by which the particles accumulate SVOCs is different. A mechanistic model based on the experimental design reveals that the presence of the particles increases the gas-phase concentration gradient in the boundary layer, resulting in enhanced mass transfer from the emission source into the air. This novel approach provides new insight into experimental designs for rapid Kp measurement and a sound basis for investigating particle-mediated mass transfer of SVOCs.

DOI
Journal Article

Abstract  A new experimental approach to the study of collisions of hydroxyl radicals with liquid surfaces is described, incorporating a molecular-beam source of OH (or, in practice, OD, for technical reasons) radicals. This allowed the collision-energy dependence of the scattering to be examined. The incident and scattered OD molecules were detected by laser-induced fluorescence. The representative branched, long-chain alkane, squalane (2,6,10,15,19,23-hexamethyltetracosane), and its partially unsaturated analogue, squalene (2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene), were compared with perfluoropolyether as an inert reference liquid. Dynamical aspects of the scattering necessary to quantify the OD survival probability, and hence its complement, the reactive sticking coefficient, were determined. Results were obtained at average laboratory-frame kinetic energies of 7.2 and 29.5 kJ mol(-1); they are compared with previous independent measurements using a photolytic source of OH with an average kinetic energy of 54 kJ mol(-1). At lower collision energies, the survival probability is significantly lower on squalene than on squalane but increases significantly with collision energy. This is consistent with a negatively activated contribution to loss of hydroxyl through addition to double-bond sites at the squalene surface. In contrast, survival on squalane surface is found to be approximately independent of collision energy across the range examined. This is surprising because it does not reflect the positively activated behavior typical of gas-phase OH + alkane reactions. We suggest that this may be explained by a higher probability of trapping dynamics at lower collision energies, enhancing the probability of reaction following migration to more reactive sites. The results have implications for the modeling of OH uptake on atmospheric aerosol surfaces as a function of chemical composition and temperature.

Filter Results