Fatty Alcohols

Project ID

2760

Category

OPPT

Added on

Oct. 23, 2018, 8:28 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Synopsis Transparent formulations of a liposoluble sunscreen in an aqueous medium were studied, taking into account the different chemicals of a selected system situated in the vertices of a regular tetrahedron: sunscreen agent, co-solvent, (surfactants +/- mineral oil) mixture (in the tetrahedron base) and water as the fourth component. Several compositions were selected at optimized component ratios after which water was added progressively. Clear gel and liquid compositions were obtained yielding a sunscreen agent that it suitable for conventional use. The physico-chemical properties of some compositions were assessed in terms of water/sunscreen agent content.

Journal Article

Abstract  The effects of the oil phase as a mixture (binary, ternary) on the emulsion droplet size were investigated. The binary trials were performed with the aid of simplex lattice design with constraints. Droplet diameter was evaluated in terms of the oil phase viscosity and the interfacial tension between oil phase and the aqueous phase. As a result it could be shown that increasing the oil phase viscosity as a function of castor oil concentration led to a greater increase in particle size. At the same time, decreasing the interfacial tension of the oil phase as a function of oleic acid or oleic alcohol was shown to have a negligible effect on the particle size of the dispersed phase. A further aim was to find out a formulation by using a ternary oil phase resulting in a stable emulsion which could pass the autoclaving process. It was ascertained that oleic acid as a part of the oil phase led to proper formulation showing a satisfactory stability.

Journal Article

Abstract  Sterols, n-alkanols, organic carbon (OC), C/N ratios and carbon isotope data (delta 13C) were investigated in sediments of the urban Capibaribe River estuary, NE Brazil, in order to assess allochthonous and autochthonous sources of organic matter (OM). Sedimentary OC values are high, but C/N ratios and delta 13C data generally fall within the range of values reported in other riverine systems, and suggest mixed inputs from aquatic and terrestrial matter. Mean values for total 4-desmethyl sterols and high molecular weight (HMW) n-alkanols are 11.0 micrograms/g and 2.8 micrograms/g, respectively. Sterols are found at highest levels in areas of enhanced urban outfalls. They can be related to major planktonic species growing in riverine waters. Stanol/stenol ratios suggest a high degree of alteration of the autochthonous OM as a result of elevated temperatures and microbiological proliferation. Even though sterols suggest the importance of autochthonous inputs to the river, HMW n-alkanols indicate major terrigenous accumulation at the mouth and 10 km upriver. Coprostanol and epicoprostanol levels are comparable to other sewage contaminated hydrosystems, but not as high as expected given the importance of sewage outfalls and low riverine water discharge. However, high (coprostanol)/(coprostanol + cholestanol) ratio values indicate that fecal contamination is significant.

Technical Report

Abstract  In a reliable study conducted according to draft OECD guideline 422, in which groups of 12 male and 12 female rats were given up to 2000 mg/kg bw/day in the diet for 45 or about 54 days respectively, the NOAEL was 2000 mg/kg bw/day.

Journal Article

Abstract  Lepidoptera sex pheromone biosynthesis is regulated by pheromone biosynthesis activating neuropeptide (PBAN). PBAN regulates not only female sex pheromone biosynthesis but also male sex pheromone biosynthesis. Previous research has confirmed that PBAN regulates sex pheromone biosynthesis using Ca2+ as a secondary messenger in all examined species to date. However, the downstream signal of Ca2+ has remained elusive. In the present study, calcineurin A (CNA), a downstream signal of Ca2+ , was discovered in Helicoverpa armigera male hairpencil and named HaCNA. Sequence analysis demonstrated that the open reading frame of HaCNA contains 1488 nucleotides encoding 495 amino acid residues. A homology search revealed that HaCNA shares a high amino acid identity with the CNA of other insects. Developmental and spatial expression analyses revealed that the mRNA levels of HaCNA peaked at 24 h after emergence and that HaCNA expression was ubiquitous in all examined tissues. Activity analysis revealed that PBAN activates HaCNA, and a Ca2+ inhibitor, Lacl3 , attenuated the effect of PBAN by decreasing HaCNA activity. Pharmacological inhibitor and RNA interference-mediated knockdown assays revealed that both activity inhibition and decreased mRNA levels of HaCNA led to a significant decrease in the production of the male sex pheromone components [octadecanol and (Z)-11 hexadecanol)] and in the efficacy of female mating acceptance. Our results demonstrate that HaCNA acts as downstream signal of PBAN/Ca2+ and plays an important role in PBAN-induced male sex pheromone biosynthesis and female mating acceptance.

Journal Article

Abstract  OBJECTIVES: To formulate experimental hydrophobic and hydrophilic vinyl polysiloxane (VPS) impression materials ab initio, comprising a novel cross-linking agent, tetra-functional (dimethylsilyl) orthosilicate (TFDMSOS), and a non-ionic surfactant, Rhodasurf CET-2 (ethoxylatedcetyl-oleyl alcohol), and to investigate their effects on tear strength (TS).

METHODS: Five experimental formulations (Exp I-V) were prepared and compared with three medium bodied commercial VPS impression materials (Aq M, Elt M, Extr M). Tear test was performed on trouser test specimens (n=12 per material), at four time points (immediately, 24, 72 and 168 hours after setting). FTIR spectroscopy was used for identifying functional bonds and cross-linking. The results were analysed with one-way ANOVA, two-way ANOVA and post hoc Tukey's test using the SPSS PASW statistical 22 software.

RESULTS: The material with novel cross-linking agent (Exp II) had significantly higher TSs at all-time points compared to Exp I (control; p˂0.05). Materials incorporating both TFDMSOS and surfactant (Exp III, IV and V), had further significantly increased TS at all-time points, which were concentration dependent. Extr M had a significantly lower TS (immediately after setting and at 24 hours) compared to all Exp and other commercial materials, with the exception of Elt M (difference not significant). The TSs of Exp II-V, after 72 and 168 hours, were significantly higher for than all commercial products and Exp I. FTIR spectra showed the consumption of Si-H groups indicating crosslinking had taken place with the addition of TFDMSOS and surfactant which contributed to an increase in the TS.

SIGNIFICANCE: TFDMSOS cross-linking agent increased the TS of Exp II significantly at all-time points compared to the control. Novel surfactant further significantly increased TS, and it was also concentration dependent. Exp VPS with improved TS have been developed, addressing one of the drawbacks of commercial VPS materials.

Journal Article

Abstract  Highlights: • (Z)-Octadec-9-enol, safety assessment based on RIFM's criteria. • Safety assessment based on 7 human health endpoints plus environmental. • All endpoints were cleared using target data, read-across, and/or TTC.

Journal Article

Abstract  The amount and characterization of phytosterol and other minor components present in three Indian minor seed oils, mahua (Madhuca latifolia), sal (Shorea robusta) and mango kernel (Mangifera indica), have been done. Theses oils have shown commercial importance as cocoa-butter substitutes because of their high symmetrical triglycerides content. The conventional thin layer chromatography (TLC), gas chromatography (GC) & gas chromatography-mass spectroscopy (GC-MS) techniques were used to characterize the components and the high performance thin layer chromatography (HPTLC) technique was used to quantify the each group of components. The experimental data showed that the all the three oils are rich in sterol content and among all the sterols, beta-sitosterol occupies the highest amount. Sal oil contains appreciable amount of cardenolides, gitoxigenin. Tocopherol is present only in mahua oil and oleyl alcohol is present in mango kernel oil. Hydrocarbon, squalene, is present in all the three oils. The characterization of these minor components will help to detect the presence of the particular oil in specific formulations and to assess its stability as well as nutritional quality of the specific oil.

Journal Article

Abstract  BACKGROUND: Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems.

METHODS: The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements.

RESULTS: Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively.

CONCLUSIONS: The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.

Journal Article

Abstract  The magnetic needle interfacial shear rheometer is a valuable tool for the study of the mechanical properties of thin fluid films or monolayers. However, it is difficult to differentiate the interfacial and subphase contributions to the drag on the needle. In principle, the problem can be addressed by decreasing the needle diameter, which decreases the bulk contribution while the interfacial contribution remains essentially the same. Here we show the results obtained when using a new type of needle, that of magnetic microwires with diameter approximately 10 times thinner than for commercial needles. We show that the lower inertia of the microwires calls for a new calibration procedure. We propose such a new calibration procedure based on the flow field solution around the needle introduced in refs 1 and 2. By measuring thin silicone oil films with well-controlled interfacial viscosities as well as eicosanol (C20) and pentadecanoic acid (PDA, C15) Langmuir monolayers, we show that the new calibration method works well for standard needles as well as for the microwire probes. Moreover, we show that the analysis of the force terms contributing to the force on the needle helps to ascertain whether the measurements obtained are reliable for given surface shear viscosity values. We also show that the microwire probes have at least a 10-fold-lower resolution limit, allowing one to measure interfacial viscosities as low as 10(-7) N·m/s.

Journal Article

Abstract  The primary objective was to characterize Indian Coriandrum sativum L. foliage (Vulgare alef and Microcarpum DC varieties) and its radical scavenging activity. Foliage of Vulgare alef and Microcarpum DC contained ascorbic acid (1.16 ± 0.35 and 1.22 ± 0.54 mg/g), total carotenoids (1.49 ± 0.38 and 3.08 ± 1.2 mg/g), chlorophyll 'a' (8.23 ± 2.4 and 12.18 ± 2.9 mg/g), chlorophyll 'b' (2.74 ± 0.8 and 4.39 ± 1.3 mg/g) and total chlorophyll (10.97 ± 2.6 and 16.57 ± 3.2 mg/g). The polyphenol content was 26.75 ± 1.85 and 30.00 ± 2.64 mg/g in Vulgare alef and Microcarpum DC, respectively. Ethanol extracts (200 ppm) of alef and Microcarpum DC showed higher radical scavenging activity of 42.05 ± 2.42 % and 62.79 ± 1.36 % when compared with 95 % butylated hydroxyanisole. The principal component analysis results indicated that e-nose can distinguish the volatiles effectively. Quantitative descriptive sensory analysis showed that Microcarpum DC variety is superior to Vulgare alef variety. Nearly 90 % of the flavour compounds present were identified by GC-MS in both varieties. The principal component identified in both the varieties were decanal (7.645 and 7.74 %), decanol < n- > (25.12 and 39.35 %), undecanal (1.20 and 1.75 %), dodecanal (7.07 and 2.61 %), tridecen-1-al < 2E > (6.67 and 1.21 %), dodecen-1-ol < 2E- > (16.68 and 8.05 %), 13-tetradecenal (9.53 and 8.60 %), tetradecanal (5.61 and 4.35 %) and 1-octadecanol (1.25 and 3.67 %).

Journal Article

Abstract  Transdermal delivery systems (TDS) consisting of mixtures of adhesives also named multiple polymer adhesive systems are rarely found in the market and research has only been performed on a few of them. Following the principles of ICH Q8, a Design of Experiments (DOE) approach was selected for the formulation development. For evaluation of the statistical method of "mixture design", blends of silicon adhesive, acrylic adhesive, oleyl alcohol as a surfactant and ibuprofen as a model drug were considered to be combined at different concentrations. A randomized design of 16 runs with five replicates and five runs to estimate the lack of fit (LOF) was generated. Samples were tested for adhesion properties, stability of the wet mixes, solubility of the API in the matrix and appearance of the matrix. After performing an ANOVA with the results, response surfaces of tack, shear adhesion, extent of creaming, crystallization behavior, droplet size and droplet size range were derived as contour plots. It could be shown that crystal growth of ibuprofen correlates well with droplet size and droplet size range, where lowest values for crystallization were found with mixtures containing small droplets. However, it was observed that oleyl alcohol showed no positive effect on the miscibility of the polymers and no improvement of the solubility of ibuprofen in the mixtures. With a reasonable number of experiments, the development of a design space for a TDS via mixture design gave valuable information on the product as well as on the interactions of the components.

Journal Article

Abstract  To study the chemical constituents, twenty-seven compounds were isolated from the 70% ethanol extract from leaves of Nelumbo nucifera by modern chromatographic techniques. Their structures were identified as 10-octacosanol (1), beta-sitosterol (2), 1-undecanol (3), 1-eicosanol (4), daucosterol (5), 6'-hydroxy-4,4'-dimethoxychalcone (6), 3,7,8-trimethoxy-1-hydroxy-xanthone (7), rhamnetin-3-O-beta-D-glucopyranoside (8), chrysoeriol-7-O-beta-D-glucoside (9), quercetin-3-O-beta-D-glucopyranoside (10), quercetin-3-O-alpha-L-rhamnopyranosyl (11), hyperoside (12), quercetin-3-O-rutinoside (13), astragalin (14), isorhamnetin-3-O-alpha-L-rhamnopyranosyl-(1--> 6)-[alpha-D-lyxopyranosyl-(1 --> 2) -beta-D-glucopyranoside] (15), isorhamnetin-3-O-alpha-D-lyxopyranosyl-(1 --> 2) -beta-D-glucopyranoside (16), isorhamnetin-3-O-beta-D-glucopyranoside (17), isorhamnetin-3-O-alpha-L-rhamnopyranosyl-(1 --> 6)-beta-D-glucopyranoside (18), quercetin (19), kaempferol (20), dehydronuciferine (21), roemerine (22), stigmast-7-en-3-O-beta-D-glucopyranoside (23), stigmast-7-en-3beta-ol (24), and benzene-1,2-diol (25) on the basis of spectral data analysis. Compounds 1, 6, 7, 8, 24 and 25 were isolated from this plant for the first time, and compounds 15-18 were isolated from the leaves for the first time. Compounds 6, 8, 10, 11, 13 and 15 showed inhibitory activities against beta amyloid (1-42) by A-beta aggregation method with inhibition rates of (63.99 +/- 24.29)%, (79.61 +/- 4.49)%, (49.96 +/- 12.61)%, (101.19 +/- 8.19)%, (88.41+/-6.76)% and (72.48 +/- 8.97)%, respectively.

Journal Article

Abstract  Extracellular lipase activity from Ralstonia sp. NT80 is induced significantly by fatty alcohols such as stearyl alcohol. We found that when lipase expression was induced by stearyl alcohol, a 14-kDa protein (designated EliA) was produced concomitantly and abundantly in the culture supernatant. Cloning and sequence analysis revealed that EliA shared 30% identity with the protein-like activator protein of Pseudomonas aeruginosa, which facilitates oxidation and assimilation of n-hexadecane. Inactivation of the eliA gene caused a significant reduction in the level of induction of lipase expression by stearyl alcohol. Furthermore, turbidity that was caused by the presence of emulsified stearyl alcohol, an insoluble material, remained in the culture supernatant of the ΔeliA mutant during the late stationary phase, whereas the culture supernatant of the wild type at 72 h was comparatively clear. In contrast, when lipase expression was induced by polyoxyethylene (20) oleyl ether, a soluble material, inactivation of eliA did not affect the extracellular lipase activity greatly. These results strongly indicate that EliA facilitates the induction of lipase expression, presumably by promoting the recognition and/or incorporation of the induction signal that is attributed to stearyl alcohol.

Journal Article

Abstract  Chemical characterization and authentication of beeswax of Apis mellifera was performed by high temperature capillary gas chromatography coupled to electron impact mass spectrometry or to flame ionisation detection and chemometric analysis. Many major components (>50) of beeswax, odd and even hydrocarbons, oleofin, palmitate, oleate and hydroxypalmitate monoesters were detected, and for the first time palmitate and oleate monoesters esterified with 1-octadecanol and 1-eicosanol are reported to be present in beeswax. Unsupervised pattern recognition procedures, cluster analysis and principal component analysis, were used to find data patterns and successfully differentiate authentic and paraffin adulterated beeswax based on the chemical profile obtained. Independent assessment of beeswax quality and performance of the unsupervised classification methods were performed using classical analytical parameters. The discrimination power of the chemometric unsupervised methods for detection of paraffin adulterated beeswax was superior to the discriminating power of classical analytical parameters. Using linear discriminant analysis, classification rules for authentic and paraffin adulterated beeswax samples were developed. The model was validated by leave-one-out cross validation and showed good recognition and prediction abilities, 100% and 99%, respectively.

Journal Article

Abstract  We investigated and optimised the synthesis of lipophilized esters between selected phenolic acids and fatty alcohols in a binary solvent system, composed of hexane and butanone. The effect of proportions of hexane and butanone was first studied by varying the volume ratio of hexane/butanone from 85:15 to 45:55. It was found that the conversion of phenolic acids strongly depended on the proportions of hexane and butanone. To examine the effect of carbon chain length of fatty alcohols on the reaction rate, the esterifications of C4-C18 straight-chain fatty alcohol with dihydrocaffeic acid (DHCA), as a model phenolic acid, were systematically evaluated. The results indicated that the conversion of DHCA was significantly affected by the number of carbon chain of fatty alcohols. Roughly 95% conversion was achieved within 3days when hexanol was used as an acyl acceptor; while only 56% and 44% conversions were achieved when 1-butanol and octadecanol were employed, respectively. However, the conversions of ferulic and caffeic acids under the same conditions were much lower than was that of DHCA. The optimal mixture ratio of hexane to butanone was found to be 65:35. Using the reaction of octanol and DHCA as a model, the reaction parameters, such as temperature, enzyme load, reaction time and substrate molar ratio, were optimised with response surface methodology (RSM). A second polynomial model was generated and optimised reaction conditions were obtained as: temperature 60°C, reaction time 3.9days, enzyme load 238mg, and substrate molar ratio 3.6 (octanol/DHCA). A validation reaction, based on the optimal conditions, was conducted, to yield 94.5% conversion of DHCA, indicating the suitability of the RSM model.

Journal Article

Abstract  The genus Astragalus is a rich source of a variety of biologically active compounds including phenols, saponins, polysaccharides and essential oils. The present study was conducted to determine ontogenetic variation of the volatile organic compounds as well as total phenolic contents and antioxidant activity in leaves of A. compactus. The leaves of plant were harvested at vegetative, flowering and fructification stages and were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Total phenolic content (TPC) was determined using the Folin-Ciocalteau reagent and the antioxidant capacity was evaluated with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. Different classes of volatile compounds were identified including alcohols, esters, hydrocarbons, sterols and terpenoides. Significant variation of these compounds was found during phenological stages of development. Sterols and hydrocarbons were the main components of essential oils at the vegetative stage. The presence of terpenoides (phytol) and alcohols (docosanol) was significant at the flowering stage. Fructification phase was characterized by the high content of sterols and hydrocarbons and absence of phytol. The antioxidant activity and phenolic content were related to the physiological stage and the highest amount detected at fructification phase. The ontogenetic variations of phenolic contents and antioxidant properties are largely contributed by climatic factors such as temperature and solar radiation.

Journal Article

Abstract  We report molecular dynamics simulations of bilayers using a united atom model with explicit solvent molecules. The bilayer consists of the single tail cationic surfactant behenyl trimethyl ammonium chloride (BTMAC) with stearyl alcohol (SA) as the cosurfactant. We study the gel to liquid crystalline transitions in the bilayer by varying the amount of water at fixed BTMAC to SA ratio as well as by varying the BTMAC to SA ratio at fixed water content. The bilayer is found to exist in the tilted, L(beta') phase at low temperatures, and for the compositions investigated in this study, the L(beta') to L(alpha) melting transition occurred in the temperature range 330-338 K. For the highest BTMAC to SA composition (2:3 molar ratio), a diffuse headgroup-water interface is observed at lower temperatures, and an increase in the d-spacing occurs prior to the melting transition. This pretransition swelling is accompanied by a sharpening in the water density variation across the headgroup region of the bilayer. Signatures of this swelling effect which can be observed in the alkane density distributions, area per headgroup, and membrane thickness are attributed to the hydrophobic effect. At a fixed bilayer composition, the transition temperature (>338 K) from the L(beta') to L(alpha) transition obtained for the high water content bilayer (80 wt %) is similar to that obtained with low water content (54.3 wt %), confirming that the melting transition at these water contents is dominated by chain melting.

  • <<
  • 2 of 34
  • >>
Filter Results