Malonates

Project ID

2759

Category

OPPT

Added on

Oct. 23, 2018, 8:16 a.m.

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  The production and use pattern of Diethylmalonate (DEM) and Dimethylmalonate (DMM) are comparable. The two chemicals have very similar physico-chemical properties and both esters are hydrolyzed via a two step reaction to malonic acid and the corresponding alcohol, methanol or ethanol. It is likely that unspecific esterases in the body catalyze the hydrolysis. The alcohols and malonic acid are physiological substances that are metabolized via physiological pathways. Ethanol (CAS No. 64-17-5) and methanol (CAS No. 67-56-1) were assessed at SIAM 19. For ethanol it was concluded that the chemical is currently of low priority for further work, because the hazardous properties of ethanol are manifest only at doses associated with consumption of alcoholic beverages. As it is impossible to reach these exposure levels as a consequence of the manufacture and use of malonates, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. For methanol, SIAM 19 decided that this chemical is a candidate for further work. Methanol exhibits potential hazardous properties for human health (neurological effects, CNS depression, ocular effects, reproductive and developmental effects, and other organ toxicity). The effects of methanol on the CNS and retina in humans only occur at doses at which formate accumulates due to a rate-limiting conversion to carbon dioxide. In primates, formate accumulation was observed at methanol doses greater than 500 mg/kg bw (which would require a DMM dose of more than 1000 mg/kg bw). As there were no indications of a methanol associated toxicity from a well performed repeated dose toxicity study with DMM in rodents (which are, however, known to be less sensitive to methanol toxicity than humans), and because methanol toxicity would not be expected up to doses as high as 1000 mg DMM/kg bw/day, it was concluded that methanol does not make a relevant contribution to the toxicity profile of DMM. A possible mode of action for systemic toxicity of DMM and DEM can only be deduced from the repeated dose study with DMM, indicating a reversible liver hypertrophy at the cellular level at high doses of 1000 mg/kg bw/day. This effect can be an indication of an induction of metabolism in the liver rather than a clear systemic toxicity.

Technical Report

Abstract  A piscicide screening program was conducted with 1,888 different chemicals mostly at concentrations of 10 ppm. The times at which fish lost their equilibrium and died are given for 2,552 separate 24-hour assays. The species tested were the northern squawfish (Ptychocheilus oregonensis), chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), and steelhead (Salmo gairdneri).

Journal Article

Abstract  The effects of branched-chain amino acid metabolites on granulocyte-macrophage progenitor cell proliferation in marrow culture are reported. Isovalerate and propionate profoundly suppress granulopoiesis at both 3.2 and 6.4 mM concentrations, whereas methylmalonate and other metabolites suppress to a lesser degree. The parent branched-chain amino acids leucine, isoleucine, and valine do not suppress in vitro granulopoiesis at similar concentrations. Because the concentrations of the organic acids tested fall within the pathophysiologic ranges observed in patients with isovaleric, propionic, and methylmalonic acidemias, we suggest that elevated in vivo levels of isovalerate, propionate, and to a lesser degree methylmalonate are responsible for the neutropenia observed in these disorders.

Journal Article

Abstract  Decontamination of chemical agents from the skin uses both dry and wet decontamination processes. Recent studies have shown that wet decontamination frequently results in stratum corneum hydration. To evaluate the hydration effect of wet decontamination on the skin barrier function and hence on the decontamination efficiency, a series of comparative studies were carried out on human skin contaminated with the nerve agent simulant diethylmalonate, using decontamination media having different salinity and surfactants. The results showed that, compared to non-decontaminated skin, remnant diethylmalonate on decontaminated skin penetrated at an accelerated rate in the immediate 2 h following decontamination. This transient enhancement effect, ranging from 20 to 98%, was depended on the nature of the decontamination media used and was more obvious in skin samples that were decontaminated 1 h postexposure. All decontamination media exhibited this effect, with the greatest enhancement observed in the following order: anionic surfactant > cationic surfactant > non-ionic surfactant > deionized water > 0.9% saline > 9% saline.

Journal Article

Abstract  Intrastriatal injections of the mitochondrial toxins malonate and 3-nitropropionic acid produce selective cell death similar to that seen in transient ischemia and Huntington's disease. The extent of cell death can be attenuated by pharmacological or surgical blockade of cortical glutamatergic input. It is not known, however, if dopamine contributes to toxicity caused by inhibition of mitochondrial function. Exposure of primary striatal cultures to dopamine resulted in dose-dependent death of neurons. Addition of medium supplement containing free radical scavengers and antioxidants decreased neuronal loss. At high concentrations of the amine, cell death was predominantly apoptotic. Methyl malonate was used to inhibit activity of the mitochondrial respiratory chain. Neither methyl malonate (50 microM) nor dopamine (2.5 microM) caused significant toxicity when added individually to cultures, whereas simultaneous addition of both compounds killed 60% of neurons. Addition of antioxidants and free radical scavengers to the incubation medium prevented this cell death. Dopamine (up to 250 microM) did not alter the ATP/ADP ratio after a 6-h incubation. Methyl malonate, at 500 microM, reduced the ATP/ADP ratio by approximately 30% after 6 h; this decrease was not augmented by coincubation with 25 microM dopamine. Our results suggest that dopamine causes primarily apoptotic death of striatal neurons in culture without damaging cells by an early adverse action on oxidative phosphorylation. However, when combined with minimal inhibition of mitochondrial function, dopamine neurotoxicity is markedly enhanced.

Journal Article

Abstract  Glutamate-induced excitotoxicity is implicated as playing a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS), and mitochondrial dysfunction is also found in ALS patients. We investigated the relationship between glutamate excitotoxicity and mitochondrial dysfunction elicited by rotenone (a complex I inhibitor), malonate (a complex II inhibitor), or antimycin (a complex III inhibitor), in primary cultures of the embryonic rat spinal cord. Rotenone and malonate induced relatively selective toxicity against motor neurons as compared to non-motor neurons, whereas antimycin caused non-selective toxicity. The toxicity of rotenone was prevented by a non-N-methyl-D-aspartate (NMDA) receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) but not by an NMDA receptor antagonist, 5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801). The toxicity of malonate was blocked by both CNQX and MK-801. The toxicity of antimycin was affected by neither CNQX nor MK-801. When mitochondrial complex I was mildly inhibited by a sub-lethal concentration of rotenone, AMPA-induced motor neuron death was significantly exacerbated. A sub-lethal concentration of malonate exacerbated both NMDA- and AMPA-induced motor neuron death. These data suggest that mitochondrial dysfunction predisposes motor neurons to ionotropic glutamate receptor-mediated excitotoxicity.

Journal Article

Abstract  The relative contribution of glycolysis vs. oxidative metabolism to the stimulus secretion coupling mechanism of P-cells was investigated in isolated islets. For that purpose, the secretory and intracellular calcium responses of islets to both glucose and succinic acid dimethyl ester (SAD) were compared. After 45 min of rat islet perifusion in the absence of substrates, the maximum secretory responses to Glucose (20 mmol/L) and SAD (10 mmol/L) were qualitatively and quantitatively indistinguishable. Malonic acid dimethyl ester (a permeable citric acid cycle inhibitor) suppressed the insulin secretory response to both 20 mmol/L glucose and 10 mmol/L SAD (-70% on average). The inhibitor decreased within 70% the rate of (CO2)-C-14-production from 10 mmol/L [2-C-14]pyruvate without affecting the rate of 20 mmol/L D-[5-H-3]glucose utilization. Both, 11.1 mmol/L glucose and 10 mmol/L SAD, elevated the intracellular calcium concentration and induced a similar pattern of oscillations that were rapidly ablated by 20 mmol/L malonic acid dimethyl ester. However. the intracellular concentration of calcium declined to basal values several minutes after the introduction of the inhibitor in the presence of SAD whereas it remained elevated in the case of glucose. In conclusion: (1) An exclusive increase of mitochondrial metabolism in pancreatic islets was sufficient to mimic the effects of glucose on intracellular calcium and insulin secretion. (2) Islet glycolysis and/or the re-oxidation of cytoplasmic NADH allowed the maintenance of an elevated, though non-oscillating, intracellular calcium concentration, but a reduced response to glucose. (C) 2003 Elsevier Inc. All rights reserved.

DOI
Journal Article

Abstract  The uptake of dimethyl malonate and dimethyl succinate on aqueous surfaces was measured between 266 and 279 K, using the droplet train technique coupled with mass spectrometric detection. The uptake coefficients gamma were found to be independent of the aqueous phase composition and of the gas-liquid contact times. In addition, the uptake coefficients and the derived mass accommodation coefficients a show a negative temperature dependence in the temperature ranges studied. The mass accommodations decrease from 7.8 x 10(-2) to 5.0 x 10(-2) and from 4.5 x 10(-1) to 2.3 x 10(-2) for dimethyl malonate and succinate, respectively. These results are used to discuss the incorporation of oxygenated volatile organic compounds (VOCs) into the liquid using the nucleation theory. Henry's law constants of both compounds were directly measured between 283 and 298 K using a dynamic equilibrium system. Their values exponentially decrease when temperature increases, from (2.60 +/- 0.30) x 10(4) to (0.40 +/- 0.05) x 10(4) and from (1.20 +/- 0.10) x 10(4) to (0.30 +/- 0.03) x 10(4) for dimethyl malonate and succinate, respectively (in units of M atm(-1)). The partitioning of both dibasic esters between gas and aqueous phases and the corresponding atmospheric lifetimes have then been derived.

Journal Article

Abstract  The microbial capacity to degrade simple organic compounds with quaternary carbon atoms was demonstrated by enrichment and isolation of five denitrifying strains on dimethylmalonate as the sole electron donor and carbon source. Quantitative growth experiments showed a complete mineralization of dimethylmalonate. According to phylogenetic analysis of the complete 16S rRNA genes, two strains isolated from activated sewage sludge were related to the genus Paracoccus within the alpha-Proteobacteria (98.0 and 98.2% 16S rRNA gene similarity to Paracoccus denitrificans(T)), and three strains isolated from freshwater ditches were affiliated with the beta-Proteobacteria (97.4 and 98.3% 16S rRNA gene similarity to Herbaspirillum seropedicae(T) and Acidovorax facilis(T), respectively). Most-probable-number determinations for denitrifying populations in sewage sludge yielded 4.6 x 10(4) dimethylmalonate-utilizing cells ml(-1), representing up to 0.4% of the total culturable nitrate-reducing population.

Technical Report

Abstract  To determine the potential environmental persistence and toxic effects of agent simulants Diethyl Malonate (DEM) and Methyl Salicylate (MS), plants, soils, earthworms, and oil microbial populations were exposed to projected aerosolized simulant concentrations of (approximately)100 (low) and (approximately)1000 (high) mg/m(sup 3). Both simulants exhibited biphasic residence times on foliar and soil surfaces following aerosol exposure. Half-times of DEM on soil and foliar surfaces were 1 to 3 h and 5 to 22 H, respectively, and 2 to 2 h and 5 to 31 h for the MS, respectively. Persistence was longer on the foliar surfaces than that of the soils. Both simulants proved phytotoxic to vegetation with a lower threshold of 1 to 2 (mu)m/cm(sup 2) for the MS versus that of 10 (mu)g/cm(sup 2) for the DEM. However, neither significantly affected chloroplast electron transport in vitro at concentrations of up to 100 (mu)g/mL. Results from in vitro testing of DEM indicated concentrations below 500 (mu)g/g dry soil generally did not adversely impact soil microbial activity, while the theshold was 100 (mu)g/g dry soil for MS. Earthworm bioassays indicated survival rates of 66% at soil doses of 204 (mu)g DEM/cm(sup 2) soil and 86% at soil doses of 331 (mu)g MS/cm(sup 2).

Book/Book Chapter
Filter Results