Malonates

Project ID

2759

Category

OPPT

Added on

Oct. 23, 2018, 8:16 a.m.

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  The production and use pattern of Diethylmalonate (DEM) and Dimethylmalonate (DMM) are comparable. The two chemicals have very similar physico-chemical properties and both esters are hydrolyzed via a two step reaction to malonic acid and the corresponding alcohol, methanol or ethanol. It is likely that unspecific esterases in the body catalyze the hydrolysis. The alcohols and malonic acid are physiological substances that are metabolized via physiological pathways. Ethanol (CAS No. 64-17-5) and methanol (CAS No. 67-56-1) were assessed at SIAM 19. For ethanol it was concluded that the chemical is currently of low priority for further work, because the hazardous properties of ethanol are manifest only at doses associated with consumption of alcoholic beverages. As it is impossible to reach these exposure levels as a consequence of the manufacture and use of malonates, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. For methanol, SIAM 19 decided that this chemical is a candidate for further work. Methanol exhibits potential hazardous properties for human health (neurological effects, CNS depression, ocular effects, reproductive and developmental effects, and other organ toxicity). The effects of methanol on the CNS and retina in humans only occur at doses at which formate accumulates due to a rate-limiting conversion to carbon dioxide. In primates, formate accumulation was observed at methanol doses greater than 500 mg/kg bw (which would require a DMM dose of more than 1000 mg/kg bw). As there were no indications of a methanol associated toxicity from a well performed repeated dose toxicity study with DMM in rodents (which are, however, known to be less sensitive to methanol toxicity than humans), and because methanol toxicity would not be expected up to doses as high as 1000 mg DMM/kg bw/day, it was concluded that methanol does not make a relevant contribution to the toxicity profile of DMM. A possible mode of action for systemic toxicity of DMM and DEM can only be deduced from the repeated dose study with DMM, indicating a reversible liver hypertrophy at the cellular level at high doses of 1000 mg/kg bw/day. This effect can be an indication of an induction of metabolism in the liver rather than a clear systemic toxicity.

Journal Article

Abstract  There is substantial evidence implicating mitochondrial dysfunction and free radical generation as major mechanisms of neuronal death in neurodegenerative diseases. The major free radical scavenging enzyme in mitochondria is manganese superoxide dismutase (SOD2). In the present study we investigated the susceptibility of mice with a partial deficiency of SOD2 to the neurotoxins 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP), 3-nitropropionic acid (3-NP), and malonate, which are commonly used animal models of Parkinson's and Huntington's disease. Heterozygous SOD2 knockout (SOD2(+/-)) mice showed no evidence of neuropathological or behavioral abnormalities at 2-4 months of age. Compared to littermate wild-type mice, mice with partial SOD2 deficiency showed increased vulnerability to dopamine depletion after systemic MPTP treatment and significantly larger striatal lesions produced by both 3-NP and malonate. SOD2(+/-) mice also showed an increased production of "hydroxyl" radicals after malonate injection measured with the salicylate hydroxyl radical trapping method. These results provide further evidence that reactive oxygen species play an important role in the neurotoxicity of MPTP, malonate, and 3-NP. These findings show that a subclinical deficiency in a free radical scavenging enzyme may act in concert with environmental toxins to produce selective neurodegeneration.

Journal Article

Abstract  Methylmalonate and propionate, the major metabolites of the propionate pathway of fatty and amino acid metabolism used at 1-4 mM cause selective inhibition of succinate and palmitoyl carnitine oxidation in liver mitochondria. Methylmalonate is more specific towards succinate, whereas propionate--towards palmitoyl carnitine oxidation. Methylmalonate is transported to mitochondria at a high rate with no effect on succinate transport. Being injected intramusculary methylmalonate has no inhibiting effect on the oxidative activity of mitochondria but is able to activate succinate and palmitoyl carnitine oxidation. The inhibiting effect of propionate on palmitoyl carnitine oxidation is a long-term one. Injections of these metabolites precursors, isoleucine, methionine and valine, produce an activating effect on succinate oxidation. Thus, propionate pathway metabolites may participate in the regulation of lipid-carbohydrate metabolism.

Journal Article

Abstract  The effects of branched-chain amino acid metabolites on granulocyte-macrophage progenitor cell proliferation in marrow culture are reported. Isovalerate and propionate profoundly suppress granulopoiesis at both 3.2 and 6.4 mM concentrations, whereas methylmalonate and other metabolites suppress to a lesser degree. The parent branched-chain amino acids leucine, isoleucine, and valine do not suppress in vitro granulopoiesis at similar concentrations. Because the concentrations of the organic acids tested fall within the pathophysiologic ranges observed in patients with isovaleric, propionic, and methylmalonic acidemias, we suggest that elevated in vivo levels of isovalerate, propionate, and to a lesser degree methylmalonate are responsible for the neutropenia observed in these disorders.

Journal Article

Abstract  Decontamination of chemical agents from the skin uses both dry and wet decontamination processes. Recent studies have shown that wet decontamination frequently results in stratum corneum hydration. To evaluate the hydration effect of wet decontamination on the skin barrier function and hence on the decontamination efficiency, a series of comparative studies were carried out on human skin contaminated with the nerve agent simulant diethylmalonate, using decontamination media having different salinity and surfactants. The results showed that, compared to non-decontaminated skin, remnant diethylmalonate on decontaminated skin penetrated at an accelerated rate in the immediate 2 h following decontamination. This transient enhancement effect, ranging from 20 to 98%, was depended on the nature of the decontamination media used and was more obvious in skin samples that were decontaminated 1 h postexposure. All decontamination media exhibited this effect, with the greatest enhancement observed in the following order: anionic surfactant > cationic surfactant > non-ionic surfactant > deionized water > 0.9% saline > 9% saline.

Journal Article

Abstract  Intrastriatal injections of the mitochondrial toxins malonate and 3-nitropropionic acid produce selective cell death similar to that seen in transient ischemia and Huntington's disease. The extent of cell death can be attenuated by pharmacological or surgical blockade of cortical glutamatergic input. It is not known, however, if dopamine contributes to toxicity caused by inhibition of mitochondrial function. Exposure of primary striatal cultures to dopamine resulted in dose-dependent death of neurons. Addition of medium supplement containing free radical scavengers and antioxidants decreased neuronal loss. At high concentrations of the amine, cell death was predominantly apoptotic. Methyl malonate was used to inhibit activity of the mitochondrial respiratory chain. Neither methyl malonate (50 microM) nor dopamine (2.5 microM) caused significant toxicity when added individually to cultures, whereas simultaneous addition of both compounds killed 60% of neurons. Addition of antioxidants and free radical scavengers to the incubation medium prevented this cell death. Dopamine (up to 250 microM) did not alter the ATP/ADP ratio after a 6-h incubation. Methyl malonate, at 500 microM, reduced the ATP/ADP ratio by approximately 30% after 6 h; this decrease was not augmented by coincubation with 25 microM dopamine. Our results suggest that dopamine causes primarily apoptotic death of striatal neurons in culture without damaging cells by an early adverse action on oxidative phosphorylation. However, when combined with minimal inhibition of mitochondrial function, dopamine neurotoxicity is markedly enhanced.

Journal Article

Abstract  The functioning of the propionate pathway of oxidation substrate metabolism in the norm and under vitamin B12 deficiency has been studied. This pathway has been shown to play an important role in oxidative processes occurring in normal organisms, for its inhibition in B12-deficient animals is associated with a reduction of respiration as well as with noticeable decreases in palmitoylcarnitine and succinate oxidation rates and oxidation phosphorylation coupling. Succinate, the end product of the propionate pathway, normalizes the respiration and restores the rate of palmitoylcarnitine oxidation in B12-deficient animals, which is suggestive of its crucial role in the propionate pathway. In vivo propionate inhibits, whereas methyl malonate stimulates palmitoylcarnitine respiration, however only in intact animals. In B12-deficient animals the sensitivity to these metabolites is decreased.

Journal Article

Abstract  Glutamate-induced excitotoxicity is implicated as playing a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS), and mitochondrial dysfunction is also found in ALS patients. We investigated the relationship between glutamate excitotoxicity and mitochondrial dysfunction elicited by rotenone (a complex I inhibitor), malonate (a complex II inhibitor), or antimycin (a complex III inhibitor), in primary cultures of the embryonic rat spinal cord. Rotenone and malonate induced relatively selective toxicity against motor neurons as compared to non-motor neurons, whereas antimycin caused non-selective toxicity. The toxicity of rotenone was prevented by a non-N-methyl-D-aspartate (NMDA) receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) but not by an NMDA receptor antagonist, 5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801). The toxicity of malonate was blocked by both CNQX and MK-801. The toxicity of antimycin was affected by neither CNQX nor MK-801. When mitochondrial complex I was mildly inhibited by a sub-lethal concentration of rotenone, AMPA-induced motor neuron death was significantly exacerbated. A sub-lethal concentration of malonate exacerbated both NMDA- and AMPA-induced motor neuron death. These data suggest that mitochondrial dysfunction predisposes motor neurons to ionotropic glutamate receptor-mediated excitotoxicity.

Journal Article

Abstract  The influence of the selective adenosine A(2A) receptor antagonist ZM 241385 on exogenous l-DOPA-derived dopamine (DA) release in intact and dopamine-denervated rats was studied using an in vivo microdialysis in freely moving animals. Local infusion of l-DOPA (2.5 microM) produced a marked increase in striatal extracellular DA level in intact and malonate-lesioned rats. Intrastriatal perfusion of ZM 241385 (50-100 microM) had no effect on basal extracellular DA level, but enhanced dose-dependently the l-DOPA-induced DA release in intact and malonate-lesioned animals. A non-selective adenosine A(2A) receptor antagonist DMPX (100 microM), similarly to ZM 241385, accelerated conversion of l-DOPA in intact and malonate-denervated rats. This effect was not produced by the adenosine A(1) receptor antagonist, CPX (10-50 microM). However, ZM 241385 did not affect the l-DOPA-induced DA release in rats pretreated with reserpine (5 mg/kg i.p.) and alpha-methyl-p-tyrosine (AMPT, 300 mg/kg i.p.). Obtained results indicate that blockade of striatal adenosine A(2A) receptors increases the l-DOPA-derived DA release possibly by indirect mechanism exerted on DA terminals, an effect dependent on striatal tyrosine hydroxylase activity. Selective antagonists of adenosine A(2A) receptors may exert a beneficial effect at early stages of Parkinson's disease by enhancing the therapeutic efficacy of l-DOPA applied exogenously.

Journal Article

Abstract  The relative contribution of glycolysis vs. oxidative metabolism to the stimulus secretion coupling mechanism of P-cells was investigated in isolated islets. For that purpose, the secretory and intracellular calcium responses of islets to both glucose and succinic acid dimethyl ester (SAD) were compared. After 45 min of rat islet perifusion in the absence of substrates, the maximum secretory responses to Glucose (20 mmol/L) and SAD (10 mmol/L) were qualitatively and quantitatively indistinguishable. Malonic acid dimethyl ester (a permeable citric acid cycle inhibitor) suppressed the insulin secretory response to both 20 mmol/L glucose and 10 mmol/L SAD (-70% on average). The inhibitor decreased within 70% the rate of (CO2)-C-14-production from 10 mmol/L [2-C-14]pyruvate without affecting the rate of 20 mmol/L D-[5-H-3]glucose utilization. Both, 11.1 mmol/L glucose and 10 mmol/L SAD, elevated the intracellular calcium concentration and induced a similar pattern of oscillations that were rapidly ablated by 20 mmol/L malonic acid dimethyl ester. However. the intracellular concentration of calcium declined to basal values several minutes after the introduction of the inhibitor in the presence of SAD whereas it remained elevated in the case of glucose. In conclusion: (1) An exclusive increase of mitochondrial metabolism in pancreatic islets was sufficient to mimic the effects of glucose on intracellular calcium and insulin secretion. (2) Islet glycolysis and/or the re-oxidation of cytoplasmic NADH allowed the maintenance of an elevated, though non-oscillating, intracellular calcium concentration, but a reduced response to glucose. (C) 2003 Elsevier Inc. All rights reserved.

Technical Report

Abstract  This substance is manufactured and/or imported in the European Economic Area in 1 000+ tonnes per year. This substance is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Filter Results