3-Methoxybutyl acetate

Project ID

2732

Category

OPPT

Added on

Sept. 11, 2018, 5:36 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  A kind of amphiphilic derivatives of chitosan (2-hydroxyl-3-butoxyl)-propylcarboxymethyl-chitosan (HBP-CMCHS), has been synthesized, and the critical micelle concentration (cmc) of HBP-CMCHS was detected by the fluorescence method. The puerarin-loaded HBP-CMCHS micellar system was prepared by physical entrapped method. Result showed that when adding the same amount of puerarin, the solubilizing capacity was enhanced by increasing the concentration of HBP-CMCHS and temperature. Puerarin-loaded micellar system of HBP-CMCHS was characterized by TEM and DLS. TEM photograph revealed that the micelles were spherical and puerarin was solubilized in the cores of the spherical polymeric micelles. DLS showed that after solubilization the size of the micelles became bigger. In vitro tests showed that puerarin was slowly released from micellar solution and the release lasted up to 60 h by means of the dialysis method.

Journal Article

Abstract  Normobaric hyperoxia (NBO) and cilostazol (6-[4-(1-cyclohexy-1H-tetrazol-5-yl)butoxyl]-3,4-dihydro-2-(1H)-quinolinone) (a selective inhibitor of phosphodiesterase 3) have each been reported to exert neuroprotective effects against acute brain injury after cerebral ischemia in rodents. Here, we evaluated the potential neuroprotective effects of combination treatment with NBO and cilostazol against acute and subacute brain injuries after simulated stroke. Mice subjected to 2-h filamental middle cerebral artery (MCA) occlusion were treated with NBO (95% O(2), during the ischemia) alone, with cilostazol (3 mg/kg i.p. after the ischemia) alone, with both of these treatments (combination), or with vehicle. The histological and neurobehavioral outcomes were assessed at acute (1 day) or subacute (7 days) stages after reperfusion. We measured regional cerebral blood flow (rCBF) during and after ischemia by laser-Doppler flowmetry and recovery (versus vehicle) in the combination therapy group just after reperfusion. Mean acute and subacute lesion volumes were significantly reduced in the combination group but not in the two monotherapy groups. The combination therapy increased endothelial nitric-oxide synthase (eNOS) activity in the lesion area after ischemia versus vehicle. Combination therapy with NBO plus cilostazol protected mice subjected to focal cerebral ischemia by improvement of rCBF after reperfusion, in part in association with eNOS activity.

Journal Article

Abstract  A kinetic study of the hydrogen atom abstraction reactions from propanal (PA) and 2,2-dimethylpropanal (DMPA) by the cumyloxyl radical (CumO•) has been carried out in different solvents (benzene, PhCl, MeCN, t-BuOH, MeOH, and TFE). The corresponding reactions of the benzyloxyl radical (BnO•) have been studied in MeCN. The reaction of CumO• with 1,4-cyclohexadiene (CHD) also has been investigated in TFE solution. With CHD a 3-fold increase in rate constant (k(H)) has been observed on going from benzene, PhCl, and MeCN to TFE. This represents the first observation of a sizable kinetic solvent effect for hydrogen atom abstraction reactions from hydrocarbons by alkoxyl radicals and indicates that strong HBD solvents influence the hydrogen abstraction reactivity of CumO•. With PA and DMPA a significant decrease in k(H) has been observed on going from benzene and PhCl to MeOH and TFE, indicative of hydrogen-bond interactions between the carbonyl lone pair and the solvent in the transition state. The similar k(H) values observed for the reactions of the aldehydes in MeOH and TFE point toward differential hydrogen bond interactions of the latter solvent with the substrate and the radical in the transition state. The small reactivity ratios observed for the reactions of CumO• and BnO• with PA and DMPA (k(H)(BnO•)/k(H)(CumO•) = 1.2 and 1.6, respectively) indicate that with these substrates alkoxyl radical sterics play a minor role.

Journal Article

Abstract  We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

Journal Article

Abstract  We investigate the statistical thermodynamics and kinetics of the 1,5-hydrogen shift isomerization reaction of the 1-butoxyl radical and its reverse isomerization. The partition functions and thermodynamic functions (entropy, enthalpy, heat capacity, and Gibbs free energy) are calculated using the multi-structural torsional (MS-T) anharmonicity method including all structures for three species (reactant, product, and transition state) involved in the reaction. The calculated thermodynamic quantities have been compared to those estimated by the empirical group additivity (GA) method. The kinetics of the unimolecular isomerization reaction was investigated using multi-structural canonical variational transition state theory (MS-CVT) including both multiple-structure and torsional (MS-T) anharmonicity effects. In these calculations, multidimensional tunneling (MT) probabilities were evaluated by the small-curvature tunneling (SCT) approximation and compared to results obtained with the zero-curvature tunneling (ZCT) approximation. The high-pressure-limit rate constants for both the forward and reverse reactions are reported as calculated by MS-CVT/MT, where MT can be ZCT or SCT. Comparison with the rate constants obtained by the single-structural harmonic oscillator (SS-HO) approximation shows the importance of anharmonicity in the rate constants of these reactions, and the effect of multi-structural anharmonicity is found to be very large. Whereas the tunneling effect increases the rate constants, the MS-T anharmonicity decreases them at all temperatures. The two effects counteract each other at temperatures 385 K and 264 K for forward and reverse reactions, respectively, and tunneling dominates at lower temperatures while MS-T anharmonicity has a larger effect at higher temperatures. The multi-structural torsional anharmonicity effect reduces the final reverse reaction rate constants by a much larger factor than it does to the forward ones as a result of the existence of more low-energy structures of the product 4-hydroxy-1-butyl radical than the reactant 1-butoxyl radical. As a consequence there is also a very large effect on the equilibrium constant. The neglect of multi-structural anharmonicity will lead to large errors in the estimation of reverse reaction rate constants.

Journal Article

Abstract  Apoptosis-inducing factor (AIF) is critical for poly(ADP-ribose) polymerase-1 (PARP-1)-dependent cell death (parthanatos). The molecular mechanism of mitochondrial AIF release to the nucleus remains obscure, although a possible role of calpain I has been suggested. Here we show that calpain is not required for mitochondrial AIF release in parthanatos. Although calpain I cleaved recombinant AIF in a cell-free system in intact cells under conditions where endogenous calpain was activated by either NMDA or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) administration, AIF was not cleaved, and it was released from mitochondria to the nucleus in its 62-kDa uncleaved form. Moreover, NMDA administration under conditions that failed to activate calpain still robustly induced AIF nuclear translocation. Inhibition of calpain with calpastatin or genetic knockout of the regulatory subunit of calpain failed to prevent NMDA- or MNNG-induced AIF nuclear translocation and subsequent cell death, respectively, which was markedly prevented by the PARP-1 inhibitor, 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-iso-quinolinone. Our study clearly shows that calpain activation is not required for AIF release during parthanatos, suggesting that other mechanisms rather than calpain are involved in mitochondrial AIF release in parthanatos.

Journal Article

Abstract  A new emulsifier design principle, based on concepts borrowed from protein science, is proposed. Using this principle, a class of highly branched and spherically symmetric fluorinated oils and amphiles has been designed and synthesized, for potential applications in the construction of fluorocarbon nanoparticles. The Mitsunobu reaction was employed as the key step for introducing three perfluoro-tert-butoxyl groups into pentaerythritol derivatives with excellent yields and extremely simple isolation procedures. Due to the symmetric arrangement of the fluorine atoms, each fluorinated oil or amphile molecule gives one sharp singlet (19)F NMR signal.

Journal Article

Abstract  Monitoring of the workplace concentration of 3-methoxybutyl acetate (MBA), which is used in printer's ink and thinner for screen-printing and as an organic solvent to dissolve various resins, is important for health reasons. An active and a diffusive sampling method, using a gas chromatograph equipped with a flame ionization detector, were developed for the determination of MBA in workplace air. For the active sampling method using an activated charcoal tube, the overall desorption efficiency was 101%, the overall recovery was 104%, and the recovery after 8 days of storage in a refrigerator was more than 90%. For the diffusive sampling method using the 3M 3500 organic vapor monitor, the MBA sampling rate was 19.89 cm(3) min(-1). The linear range was from 0.01 to 96.00 microg ml(-1), with a correlation coefficient of 0.999, and the detection limits of the active and diffusive samplers were 0.04 and 0.07 microg sample(-1), respectively. The geometric mean of stationary sampling and personal sampling in a screen-printing factory were 12.61 and 16.52 ppm, respectively, indicating that both methods can be used to measure MBA in workplace air.

Journal Article

Abstract  We have demonstrated that hypochlorite (HOCI/OCl-) and hypobromite (HOBr/OBr-) can react with tert-butyl hydroperoxide with close rate constants (k(HOCl) = 10,8 M(-1) x s(1); k(HOBr) = 8,9 M(-1) x (s(-1)). By means of the spin trap 4-pyridyl-1-oxide-N-tert-butyl nitron we have found that both reactions proceed through decomposition of tert-butyl hydroperoxide and generation of tert-butyl peroxyl (OOC(CH3)3) and tert-butoxyl (OC(CH3)3) radicals, the ratio of their the concentrations being dependent on the concentration of tert-butyl hydroperoxide. Thus, hypobromite, similar to hypochlorite, is a precursor of free radicals produced in the reaction with organic hydroperoxides. This reaction can be of great importance in the intensification of free radical processes, namely, in lipid peroxidation at the stage of chain branching.

Journal Article

Abstract  Cascade radical cyclisation involving homolytic aromatic substitution has been used to synthesise new tetracycles. Treatment of vinyl iodide radical precursors with Me(3)Sn. radicals (from hexamethylditin) yielded intermediate vinyl radicals which undergo 5-exo cyclisation onto suitably placed nitrile groups to yield intermediate iminyl radicals. The iminyl radicals undergo aromatic homolytic substitution via 6-endo cyclisation (or 5-exo cyclisation followed by neophyl rearrangement) with loss of hydrogen (H.) in a H-abstraction step. We propose that this abstraction was facilitated by tert-butoxyl (t-BuO.) radicals from di-tert-butyl peroxide or methyl radicals, generated from breakdown of trimethylstannyl radicals (Me(3)Sn.). The biologically active alkaloids mappicine and luotonin A were synthesised using the new methodology. A novel radical conversion of nitriles to primary amides is proposed.

Journal Article

Abstract  Melatonin is an excellent free radical scavenger, reacting with tert-butoxyl and cumyloxyl radicals with rate constants of 3.4 x 10(7) and 6.7 x 10(7) M-1s-1, respectively. Reaction with benzophenone triplet occurs with a near-diffusion-controlled rate constant of 7.6 x 10(9) M-1s-1 in acetonitrile and probably involves charge transfer. When the radical pair formed by reaction of benzophenone triplet and melatonin is sequestered in a micelle, it is subject to extensive magnetic field effects that can be readily interpreted by the radical pair model.

Journal Article

Abstract  From the marine sponge Callyspongia aerizusa collected from the Sea of Bali, Indonesia, fungal isolates of Drechslera hawaiiensis were obtained. Culture filtrates of the fungus yielded four spiciferone derivatives which include spiciferone A (1) and B (2), and two other novel derivatives including spiciferol A (3) which is an alcohol congener of spiciferone A (1) and compound 4 which is an monocyclic spiciferone congener featuring a butoxyl side chain. The structures of the novel compounds were established on the basis of NMR spectroscopic (1H, 13C, COSY) and mass spectrometric (EIMS) data.

Journal Article

Abstract  The pharmacological and binding properties of the novel enantiomerically pure benzothiazinone (R)-(+)-3,4-dihydro-2-isopropyl-4-methyl-2-[2-[4-[4-[2-(3,4,5-tri- methoxyphenyl)-ethyl]-piperazinyl]-butoxyl-phenyl]-2H-1,4- benzothiazine-3-one dihydrochloride (HOE 166), are described. HOE 166 stereoselectively inhibited KCl-but not noradrenaline-induced contractions of guinea-pig pulmonary arteries, rabbit aorta, rat mesenteric artery preparations and k-strophantin-induced enhancement of guinea-pig papillary muscle contraction in a dose-dependent manner. KCl-induced smooth muscle contraction was inhibited by HOE 166 with IC50-values of approximately 70 nM (5-11 times less potent than nifedipine, 2-16 times more potent than verapamil), the respective S-(-)-enantiomer being approximately 10-fold less potent. HOE 166 decreased the upstroke velocity of the slow action potential in partially depolarized guinea-pig papillary muscle at similar concentrations than nifedipine. To investigate possible interactions with the calcium channel, HOE 166 and its S-(-)-enantiomer were characterized by radioligand binding studies in heart, brain and skeletal muscle transverse-tubule membranes. HOE 166 was a 4-15 times more potent inhibitor of reversible (+)-[3H]PN200-110, (-)-[3H]desmethoxyverapamil and d-cis [3H]diltiazem binding compared to its pharmacologically less active (S)-(-)-enantiomer, with IC50 values in the low nanomolar range. Extensive equilibrium and kinetic studies suggest that HOE 166 exerts its Ca2+-antagonistic effect by binding to a Ca2+-channel-associated drug receptor which is distinct from the 1,4-dihydropyridine, phenylalkylamine or benzothiazepine-selective domain. This HOE 166-selective site is, however, allosterically linked to the other sites of the Ca2+ antagonist receptor complex. We conclude that HOE 166 is a novel calcium antagonist.

Journal Article

Abstract  The ability of certain lipopolysaccharide (LPS) preparations to elevate cyclic adenosine monophosphate (cAMP) in mouse thymus cells in the presence of Ro 20-1724, 4-(3-butoxyl 4-methoxybenzyl)-2-imidazolidinone, was not related to the source of supply, bacterial strain, or method of extraction. Under the same conditions adenosine is a potent stimulator of thymus cell cAMP and is, of course, blocked by the further addition of theophylline. When theophylline was added to the LPS preparations with Ro 20-1724, the cAMP production was also blocked. These studies suggested that the observed stimulation of cAMP by LPS preparations was due to adenosine and/or its nucleotides present as contaminants.

Journal Article

Abstract  A time-resolved kinetic study on the reactions of the cumyloxyl radical (CumO(•)) with intramolecularly hydrogen bonded 2-(1-piperidinylmethyl)phenol (1) and 4-methoxy-2-(1-piperidinylmethyl)phenol (2) and with 4-methoxy-3-(1-piperidinylmethyl)phenol (3) has been carried out. In acetonitrile, intramolecular hydrogen bonding protects the phenolic O-H of 1 and 2 from attack by CumO(•) and hydrogen atom transfer (HAT) exclusively occurs from the C-H bonds that are α to the piperidine nitrogen (α-C-H bonds). With 3 HAT from both the phenolic O-H and the α-C-H bonds is observed. In the presence of TFA or Mg(ClO4)2, protonation or Mg(2+) complexation of the piperidine nitrogen removes the intramolecular hydrogen bond in 1 and 2 and strongly deactivates the α-C-H bonds of the three substrates. Under these conditions, HAT to CumO(•) exclusively occurs from the phenolic O-H group of 1-3. These results clearly show that in these systems the interplay between intramolecular hydrogen bonding and Brønsted and Lewis acid-base interactions can drastically influence both the HAT reactivity and selectivity. The possible implications of these findings are discussed in the framework of the important role played by tyrosyl radicals in biological systems.

Journal Article

Abstract  The effect of 1,3-butanediol on reproductive performance as well as its teratogenic, dominant lethal and cytogenetic effects were studied in five generations of Wistar rats. Animals of both sexes were fed either control diet or diet supplemented with 1,3-butanediol at dose levels of 5, 10 or 24% of the diet by weight. Reproduction and lactation parameters were comparative to controls for four of five generations of dams and pups. In contrast, the pregnancy rate of F1A rats decreased during five successive mating cycles; no pups were obtained in the high-dose level group of the fifth series of litters (F2E generation). Excluding this group, the viability of F2 generation pups revealed no significant differences between litters or between control and test groups. No definitive dose-related teratological findings were found in either soft or skeletal tissue examinations of F3B generation rats. However, incomplete ossification of sternebrae occurred frequently in mid- and high-dose fetuses, whereas missing sternebrae were noted especially in high-level fetuses. Both skeletal tissue findings suggest slight delayed fetal growth. For the dominant lethal assay of the F1B generation, the mutagenic index (percentage resorptions per implant sites) revealed no dose-related trend. In the three-generation cytogenetic study, no 1,3-butanediol related chromosomal aberrations were noted.

Journal Article

Abstract  A photochemical model study of benzophenone triplet ((3)BP) with the MAO-B substrate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP (1)] and two of it's derivatives, 1-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine (2) and (±)-[trans-2-phenylcyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine (3) were performed. Literature precedent and calculations reported herein suggest that the barrier to ring opening for aminyl radical cations derived from N-cyclopropyl derivatives of tertiary amines (such as MPTP) will be low. The LFP results reported herein demonstrate that pathways for the reaction of (3)BP with 1, 2, and 3 are very similar. In each instance, disappearance of (3)BP is accompanied solely by appearance of bands corresponding to the diphenylhydroxylmethyl radical and neutral radical derived from MPTP and it's two derivatives 2 and 3. These results suggest that the reaction between benzophenone triplet and tertiary aliphatic amines proceed via a simple hydrogen atom transfer reaction. Additionally these model examinations provide evidence that oxidations of N-cyclopropyl derivatives of MPTP catalyzed by MAO-B may not be consistent with a pure SET pathway.

Journal Article

Abstract  In the present contribution, wavelength has been used as a tunable parameter to achieve selective control of the photophysics of two novel asymmetric bichromophoric dyads composed of naphthalene units, i.e., 6-methoxynaphthalene (NPX) and 1-methylnaphthalene (NAP) derivatives, with different electronic properties, connected by an amide spacer [(S,S) and (S,R)-NPX-NAP]. As model systems, relevant monochromophoric compounds (NPX-M and NAP-M) have also been investigated. While upon excitation at 325 nm the light energy remained in the NPX moiety, at 290 nm an efficient singlet-singlet energy transfer (phi(SSET) of about 97%) from the NAP unit to the NPX chromophore dominated. A remarkable stereodifferentiation was observed in the excited-state quenching by triethylamine via exciplex formation. The results demonstrate that it is possible to control configuration-dependent interactions in the excited state by wavelength tuning. This can be rationalized through intramolecular interactions of pi systems leading to modulation of the redox properties.

Filter Results