PFBA

Project ID

2632

Category

PFAS

Added on

Aug. 10, 2017, 7:13 a.m.

Search the HERO reference database

Query Builder

Search query
WoS
Journal Article

Abstract  Physicochemical properties of colloid zirconia aqueous so!, used as a binder in the investment casting industry were thoroughly determined. The size of the particles was determined by dynamic light scattering, and the zeta potential of the particles was measured by microelectrophoresis. The average size of the particles was 13 nm and the zeta potential was positive, equal to 30 mV. The size distribution of particles deposited on mica surface was also determined using AFM measurements. The wetting properties of the binder suspension were determined for the paraffin/air interface using the shape analysis of pendant and sessile drops. The perfluorononanoic acid (PFNA), an anionic surfactant, the non-ionic fluorinated surfactants Zonyl FSO-100 and Rokafenol RN8, and the mixtures of the surfactants were studied. Our investigations showed that the Zonyl-FSO surfactant and its mixture with Rokafenol effectively reduced the dynamic contact angle from the initial value of 94 to the value of 30 degrees. Such low contact angles represent an essential improvement of zirconia binder wettability, thus widen the range of applicability in investment casting of finely shaped details.

Journal Article

Abstract  Plastic debris damages marine wildlife and ecosystems becoming an important source of marine pollution. In addition, they can sorb, concentrate and stabilise contaminants acting as toxic carriers to the marine food web. In this context, the presence of 18 perfluoroalkyl substances (PFASs) in plastic pellets (n = 5) and beach sediment (n = 9) samples widely distributed around Greek coastal areas was assessed. The results, mainly, showed the sorption of PFASs onto pellet surface from surrounding water with concentrations from method limit of quantification to 115 ng/kg for C5, C7, C8 and C10 carboxylic acids and C8 sulfonate acid. A similar pattern was found by comparing plastic pellets and sediment for the same sampling locations that could indicate a common origin of contamination in both types of samples. However, since the number of analysed samples is limited, a more comprehensive study with a higher number of samples should be performed in future research. (C) 2014 Elsevier Ltd. All rights reserved.

DOI
Journal Article

Abstract  Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)(n)COOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 +/- 2 K. For n > 1, the length of the F(CF2)(n) group had no discernible impact on the reactivity of the molecule. For n = 1, k(OH + F(CF2)(n)COOH) = (9.35 +/- 2.08) x 10(-14) cm(3) molecule(-1) s(-1). For n = 2-4, k(OH + F(CF2)(n)COOH) = (1.69 +/- 0.22) x 10(-13) cm(3) molecule(-1) s(-1). Dimerization constants for 2F(CF2)(n)COOH = (F(CF2)(n)COOH)(2) were determined to be 0.32 +/- 0.03 Torr(-1), 0.30 +/- 0.03 Torr(-1), 0.41 +/- 0.04 Torr(-1), and 0.46 +/- 0.05 Torr(-1) for n = 1, 2, 3. 4, respectively. Atmospheric lifetimes of F(CF2)(n)COOH with respect to reaction with OH radicals are estimated to be approximately 230 days for n = 1 and 130 days for n > 1. Reaction with OH radicals is a minor atmospheric fate of F(CF2)(n)COOH. The major atmospheric removal mechanism for F(CF2)(n)COOH is believed to be wet and dry deposition which probably occurs on a time scale of the order of 10 days.

Journal Article

Abstract  Concentrations of 13 perfluoroalkyl substances (PFASs) were quantified in 79 surface soil samples from 17 coastal cities in three provinces and one municipality along the Bohai and Yellow Seas. The ∑PFASs concentrations ranged from less than limitation of quantification (LOQ) to 13.97 ng/g dry weight (dw), with a mean of 0.98 ng/g dw. The highest concentration was observed along the Xiaoqing River from Shandong province, followed by that from the Haihe River in Tianjin (10.62 ng/g dw). Among four regions, ∑PFASs concentrations decreased in the order of Tianjin, Shandong, Liaoning and Hebei, which was consistent with levels of urbanization. Fluorine chemical industries allocated in Shandong and Liaoning played important roles in terms of point emission and contamination of PFASs, dominated by perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Intensive anthropogenic activities involved in urbanization possibly resulted in increasing releases of PFASs from industrial and domestic sources.

Journal Article

Abstract  Perfluorinated alkylated substances (PFASs) have been measured in liver samples from terrestrial organisms from Greenland and the Faeroe Islands. Samples from ptarmigan (West Greenland), reindeer (southwest-Greenland), muskox (East Greenland), and land-locked Arctic char from southwest Greenland and the Faroe Islands were analyzed. In addition, PFASs levels in land-locked brown trout from Faroese lakes are reported. Of the 17 PFASs analyzed in the samples the following compounds were detected: PFOS, PFNA, PFDA, PFUnA, PFDoA, PFTrA, and PFTeA. PFNA was the compound detected in most samples and in all species. However, the compound detected at highest concentration was dependent on species, with overall highest concentrations of PFTrA and PFUnA being detected in trout liver from Lake á Mýranar (Faroe Islands). In muskox, the PFAS occurring at highest concentrations was PFDA, which was among the PFAS detected at lowest concentrations in freshwater fish, and was only detected in one individual ptarmigan. The concentration of PFOS, PFDoA and PFTrA in Arctic char from Greenland and Faroe Islands were similar, whereas the concentration of PFNA, PFDA and PFUnA were higher in Arctic char than those from Greenland. The opposite was observed for PFTeA. The PFASs occurring at highest concentrations in trout were PFTrA and PFUnA. Arctic char from Lake á Mýranar had much lower concentrations of PFTrA and PFUnA than in trout from the lakes analyzed, but a higher concentration of PFTeA than trout from the same lake. A clear pattern with odd-carbon number homologues concentrations higher than the next lower even homologue was observed in fish samples, which is consistent with the hypothesis of transport of volatile precursors to remote regions.

Journal Article

Abstract  The authors investigated the individual effects of Ca(2+) and Na(+) on the bioaccumulation of 6 types of perfluoroalkyl substances (PFASs), including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA), by Daphnia magna in water with 10 mg L(-1) bovine albumin or soy peptone. The bioaccumulation factors of PFASs by D. magna decreased linearly with the increase of Ca(2+) and Na(+) concentrations. The inhibition effect of Ca(2+) was stronger than that of Na(+), and the decreasing percentages of the body burden of PFASs in D. magna caused by the increment of 1 mmol L(-1) Ca(2+) and 1 mmol L(-1) Na(+) were 41% to approximately 48% and 2% to approximately 5%, respectively, in the presence of soy peptone. The partition coefficients (Kp) of PFASs between protein and water increased with rising Ca(2+) and Na(+) concentrations. The elevated Kp values led to the reduced concentrations of freely dissolved PFASs. This resulted in a decrease of PFAS bioaccumulation in D. magna, and the body burden of each PFAS was positively correlated with its freely dissolved concentration in water. The present study suggests that cations should be considered in the assessment of bioavailability and risk of PFASs in natural waters containing proteinaceous compounds.

Journal Article

Abstract  Perfluorooctanoic acid (PFOA) is a ubiquitous pollutant that causes liver toxicity in rodents, a process believed to be dependent on peroxisome proliferator-activated receptor-alpha (PPARα) activation. Differences between humans and rodents have made the human relevance of some health effects caused by PFOA controversial. We analyzed liver toxicity at 18 months following gestational PFOA exposure in CD-1 and 129/Sv strains of mice and compared PFOA-induced effects between strains and in wild type (WT) and PPARα-knockout (KO) 129/Sv mice. Pregnant mice were exposed daily to doses (0.01-5 mg/kg/BW) of PFOA from gestation days 1 to 17. The female offspring were necropsied at 18 months, and liver sections underwent a full pathology review. Hepatocellular adenomas formed in PFOA-exposed PPARα-KO 129/Sv and CD-1 mice and were absent in untreated controls from those groups and WT 129/Sv. Hepatocellular hypertrophy was significantly increased by PFOA exposure in CD-1, and an increased severity was found in WT 129/Sv mice. PFOA significantly increased nonneoplastic liver lesions in PPARα-KO mice (hepatocyte hypertrophy, bile duct hyperplasia, and hematopoietic cell proliferation). Low-dose gestational exposures to PFOA induced latent PPARα-independent liver toxicity that was observed in aged mice. Evidence of liver toxicity in PPARα-KO mice warrants further investigation into PPARα-independent pathways.

Journal Article

Abstract  The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.

Journal Article

Abstract  This paper presents a survey on the occurrence and sources of 11 perfluoroalkyl acids (PFAA) in the main river basins in Italy, covering about 40% of the Italian surface area and 45% of the Italian population. Total concentrations of PFAA ranged from

Journal Article

Abstract  We measured concentrations of PFAAs in 397 foods, of 66 types, in Korea, and determined the daily human dietary PFAAs intake and the contribution of each foodstuff to that intake. The PFAAs concentration in the 66 different food types ranged from below the detection limit to 48.3ng/g. Perfluorooctane sulfonate (PFOS) and long-chain perfluorocarboxylic acids (PFCAs) were the dominant PFAAs in fish, shellfish, and processed foods, while perfluorooctanoic acid (PFOA) and short-chain PFCAs dominated dairy foodstuffs and beverages. The Korean adult dietary intake ranges, estimated for a range of scenarios, were 0.60-3.03 and 0.17-1.68ngkg(-1)bwd(-1) for PFOS and PFOA, respectively, which were lower than the total daily intake limits suggested by European Food Safety Authority (PFOS: 150ngkg(-1)bwd(-1); PFOA: 1500ngkg(-1)bwd(-1)). The major contributors to PFAAs dietary exposure varied with subject age and PFAAs. For example, fish was a major contributor of PFOS but dairy foods were major contributors of PFOA. However, tap water was a major contributor to PFOA intake when it was the main source of drinking water (rather than bottled water).

Journal Article

Abstract  Perfluoroalkyl compounds (PFCs) have been shown to disrupt thyroid functions through thyroid hormone receptor (TR)-mediated pathways, but direct binding of PFCs with TR has not been demonstrated. We investigated the binding interactions of 16 structurally diverse PFCs with human TR, their activities on TR in cells, and the activity of perfluorooctane sulfonate (PFOS) in vivo. In fluorescence competitive binding assays, most of the 16 PFCs were found to bind to TR with relative binding potency in the range of 0.0003-0.05 compared with triiodothyronine (T3). A structure-binding relationship for PFCs was observed, where fluorinated alkyl chain length longer than ten, and an acid end group were optimal for TR binding. In thyroid hormone (TH)-responsive cell proliferation assays, PFOS, perfluorohexadecanoic acid, and perfluorooctadecanoic acid exhibited agonistic activity by promoting cell growth. Furthermore, similar to T3, PFOS exposure promoted expression of three TH upregulated genes and inhibited three TH downregulated genes in amphibians. Molecular docking analysis revealed that most of the tested PFCs efficiently fit into the T3-binding pocket in TR and formed a hydrogen bond with arginine 228 in a manner similar to T3. The combined in vitro, in vivo, and computational data strongly suggest that some PFCs disrupt the normal activity of TR pathways by directly binding to TR.

Journal Article

Abstract  The aim of the present study was to determine the distribution of per- and polyfluoroalkyl substances (PFASs) in three-egg clutches of Audouin's gull (Larus audouinii) breeding in Ebro Delta's colony according to the laying order (a, b and c eggs). Five PFASs were analyzed in 30 eggs (yolk and albumen separately), corresponding to 10 three-egg clutches. Carbon and nitrogen stable isotopes were measured as dietary tracers. PFASs were not detected in albumen. In egg yolks, perfluorooctane sulfonate (PFOS) was the main compound detected followed by perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHS) and perfluorooctanoic acid (PFOA). Perfluorooctane sulfonate (PFBS) was not detected. Mean ΣPFASs for a-eggs was of 236±57 ng g(-1) yolk wet weight (ww), for b-eggs was of 140±56 ng g(-1) yolk ww and for c-eggs, 133±54 ng g(-1) yolk ww. PFOS concentration decreased according to the laying order of the eggs, showing significant differences between consecutive eggs. In addition, significant correlation (rs2=0.7-0.9) was observed for PFOS concentration within the eggs from the same clutch. No relationship was found between PFOS levels and stable isotopes signatures. Capsule: In Audouin gull's eggs, PFOS was the main PFASs detected and its concentration decreased according to the laying sequence.

Journal Article

Abstract  In order to analyze the occurrence and composition of perfluorinated compounds (PFCs), 18 topsoil samples were collected around the Huaihe River in October, 2008. Total fluoride (TF) and extractable organic fluorine (EOF) were determined using combustion ion chromatography (CIC), and PFCs were quantified by HPLC/MS-MS. Among the sixteen PFCs analyzed, eleven PFCs were detected. Concentrations of PFCs ranged from n. d. to 1.22 ng x g(-1), and perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorooctane sulfonate (PFOS) were the predominant PFCs. Concentrations of PFCs showed no significant difference, but compositions varied from soil to soil. PFCs mainly came from emissions of local small chemical plants and atmospheric dry and wet deposition. The results from mass balance analysis indicated that PFCs only accounted for 0.3% of EOF and EOF comprised 0.02% of TF. There was still a large amount of organic fluorine besides PFCs, and inorganic fluorine and non-extractable organic fluorine comprised the major portion of TF. Furthermore, the current analysis method could not detect all kinds of PFCs and related unknown organic fluorine.

Journal Article

Abstract  Fetal exposure to the perfluoroalkyl acids, perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA), has been associated with lower birth weight and lower weight and body mass index (weight (kg)/height (m)(2)) in early infancy. It is, however, unclear if exposure to prenatal PFOS and PFOA has a lasting influence on growth. We estimated the associations between the maternal plasma level of PFOS or PFOA and the children's body mass index, waist circumference, and risk of overweight at 7 years of age. A total of 1,400 women were randomly selected from the Danish National Birth Cohort among those who provided blood samples early in pregnancy and gave birth to liveborn singletons in 1996-2002. Weight and height information at 7 years was available for 811 children. Multiple linear and logistic regression models were used for analyses. Maternal PFOS and PFOA concentrations were overall inversely but nonsignificantly associated with the children's body mass index, waist circumference, and risk of overweight at 7 years of age. In conclusion, plasma levels of PFOS and PFOA in pregnant women did not seem to have any appreciable influence on their children's anthropometry at this point in childhood.

Journal Article

Abstract  The widespread distribution of perfluorinated chemicals (PFCs) in different environmental matrices has prompted concern about the sources, fate, and transport of these classes of chemicals. PFCs are present in the atmosphere, but only a few studies have investigated their occurrence in precipitation. In this study, concentrations of 20 PFCs, including C3-C5 short-chain PFCs, were quantified using HPLC-MS/MS in precipitation samples from Japan (n = 31), the United States (n = 12), China (n = 5), India (n = 2), and France (n = 2). Among the PFCs measured, perfluoropropanoic acid (PFPrA) was detected in all of the precipitation samples. Average total PFC concentrations ranged from 1.40 to 18.1 ng/L for the seven cities studied. The greatest total PFC concentrations were detected in Tsukuba, Japan, whereas the lowest concentrations were detected in Patna, India. PFPrA, perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were found to be the dominant PFCs in Japanese and U.S. precipitation samples. No observable seasonal trend was found in precipitation samples from two locations in Japan. Annual fluxes of PFCs were estimated for Japan and the U.S. and the evidence for precipitation as an effective scavenger of PFCs in the atmosphere is reported.

Journal Article

Abstract  The effects of exposure concentration on the bioaccumulation of four perfluorinated chemicals (PFCs): perfluorooctanesulfonate (PFOS), perfluoroocanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), was investigated using green mussels, Perna viridis. Mussels were exposed to concentrations of 1 μgL(-1) and 10 μgL(-1) of each PFC for 56 days, and the bioaccumulation factors (BAF) were found to range from 15 to 859 L/kg and from 12 to 473 L/kg at 1 μgL(-1) and 10 μgL(-1), respectively. For all compounds, the BAF was larger at the lower dosage. Results suggest that the bioaccumulation of PFCs is concentration dependent. This concentration dependency can be explained by a nonlinear adsorption mechanism, which was further supported by the experimental results. The sensitivity of BAF to exposure concentration was found to be positively related to perfluorinated chain length and the binding affinity of the compounds. Bioaccumulation of long chain carboxylates and sulfonates are more easily affected by concentration changes. The validity of the conventional kinetic method was examined by comparing the results with the fundamental steady-state method: in addition to the above-mentioned batch test, mussels were also subject to 24-day exposure (1 μgL(-1) and 10 μgL(-1)) followed by 24-day depuration. Contradictions were found in the resulting kinetic BAF and model curving fittings. A new kinetic model based on adsorption mechanism was proposed, which potentially provide more accurate description of the bioaccumulation process of PFCs.

Journal Article

Abstract  In this study, we analyzed over 30 types of PFCs, including precursors in both the dissolved phase and particle solid phase, in 50 samples of river water collected from throughout the Tokyo Bay basin. PFCs were detected in suspended solids (SSs) at levels ranging from <0.003-4.4 ng L(-1) (0.11-2470 ng g(-1) dry weight). The concentrations of PFCs in the SS were one to two order(s) of magnitude lower than those of PFCs in the dissolved phase. Relatively high levels of PFCs (total of 35 PFCs) in SS were observed in urbanized areas. The concentration of PFCAs, including PFOA and PFNA, were significantly correlated with the geographic index as artificial area (R(2) of the linear regression curve in a double logarithmic plot: 0.09-0.55). Conversely, PFOS and FOSA were significantly correlated with the arterial traffic area (R(2) in a double logarithmic plot: 0.29-0.55). Those spatial trends were similar to the trends in dissolved PFCs. We estimated the loading amount of PFCs into Tokyo Bay from six main rivers and found that more than 90% of the total PFCs reached Tokyo Bay in the dissolved phase. However, 40.0-83.5% of the long chain PFCAs (C12-C15), were transported as particle sorbed PFCs. Rain runoff events might increase the loading amount of PFCs in SS. Overall, the results presented herein indicate that greater attention should be given to PFCs, especially for longer chain PFCs in SS in addition to dissolved PFCs.

Journal Article

Abstract  Concentrations of 19 perfluorochemicals have been quantified in human blood and in some marine food resources from the region of the Gulf of Gdañsk at the Baltic Sea south coast in Poland. We indicate that in addition to PFOS and PFOA, a further 8 perfluorochemicals bioaccumulate in the human body. Food chain is an important route of exposure for all 10 perfluoroalkyl compounds detected in nonoccupationally exposed humans. Individuals who declared to have a high fish intake in their diet (mainly Baltic fish) on average contained the highest load of all 10 fluorochemicals when compared with the other human subpopulations. Baltic seafood has been found to highly influence human body burden of PFHxS, PFOS, PFOSA, PFHxA, PFHpA, PFNA, PFDA, PFUnDA, and PFDoDA, and to a lesser extent PFOA.

Journal Article

Abstract  Levels of perfluorinated carboxylates (PFCAs) in different environmental and biological compartments have been known for some time, but the routes of exposure still remain unclear. The opinions are divergent whether the exposure to general populations occurs mainly indirect through precursor compounds or direct via PFCAs. Previous results showed elevated blood levels of PFCAs in ski wax technicians compared to a general population. The objective of this follow-up study was to determine concentrations of PFCAs, perfluorosulfonates (PFSAs), and fluorotelomer alcohols (FTOHs), precursor compounds that are known to degrade to PFCAs, in air collected in the breathing zone of ski wax technicians during work. We collected air samples by using ISOLUTE ENV+ cartridges connected to portable air pumps with an air flow of 2.0 L min(-1). PFCAs C5-C11 and PFSAs C4, C6, C8, and C10 were analyzed using LC-MS/MS and FTOHs 6:2, 8:2, and 10:2 with GC-MS/MS. The results show daily inhalation exposure of 8:2 FTOH in μg/m(3) air which is up to 800 times higher than levels of PFOA with individual levels ranging between 830-255000 ng/m(3) air. This suggests internal exposure of PFOA through biotransformation of 8:2 FTOH to PFOA and PFNA in humans.

Journal Article

Abstract  A time trend study focusing on ski waxing technicians' exposure to perfluorinated chemicals (PFCs) from fluorinated wax fumes was performed in 2007/2008. Levels of eight perfluorocarboxylates and three perfluorosulfonates were analyzed in monthly blood samples from eight technicians. Samples were collected before the ski season, i.e., preseason, then at four FIS World Cup competitions in cross country skiing, and finally during an unexposed 5-month postseason period. The perfluorinated carboxylates perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) bioaccumulate, and continued exposure may contribute to elevated levels in ski technicians compared to the general population. The wax technicians' median blood level of PFOA is 112 ng/mL compared to 2.5 ng/mL in the general Swedish population. A significant correlation was found between number of working years and levels of perfluorocarboxylates. The PFOA levels in three technicians with "low" initial levels of PFOA (<10.0 ng/mL in preseason blood) increased by 254, 134, and 120%, whereas five technicians with "high" initial levels (>100 ng/mL in preseason sample) were at steady state. PFHxA is suggested to have a short half-life in humans relative the other perfluorocarboxylates. The levels of perfluorosulfonates were unaffected by the wax exposure.

Journal Article

Abstract  Adult male and female B6C3F1 mice were exposed to perfluorooctane sulfonate (PFOS) daily via gavage for 28 days (0, 0.005, 0.05, 0.1, 0.5, 1, or 5 mg/kg total administered dose [TAD]). Following exposure, various immune parameters were assessed and serum PFOS concentrations were determined. Lymphocyte proliferation was not altered in either gender. Natural killer cell activity was increased compared with control at 0.5, 1, and 5 mg/kg TAD in male mice but was not altered in female mice. At these treatment levels, splenic T-cell immunophenotypes were minimally altered in females, but all T-cell subpopulations were significantly modulated in males beginning at 0.1 mg/kg TAD. The sheep red blood cell (SRBC) plaque-forming cell (PFC) response was suppressed in male mice beginning at 0.05 mg/kg TAD and in females at 0.5 mg/kg TAD. Serum trinitrophenyl (TNP)-specific IgM titers were also decreased by PFOS after TNP-LPS (TNP conjugated to lipopolysacharide) challenge suggesting that the humoral immune effects may be attributed to the B-cell rather than T-cell because both T-dependent (SRBC) and T-independent (TI) (TNP-LPS) antigens result in suppressed IgM production. Based on the PFC response, the low observed effect level (LOEL) for males was 0.05 mg/kg TAD (ED(50) = 0.021 mg/kg TAD) and for females was 0.5 mg/kg TAD (ED(50) = 0.59 mg/kg TAD). Measured PFOS serum concentrations at these dose levels were 91.5 +/- 22.2 ng/g and 666 +/- 108 ng/g (mean +/- SD), respectively. The male LOEL serum level was approximately 14-fold lower than reported mean blood levels from occupationally exposed humans and fell in the upper range of concentrations reported for the general population. Overall, this study provides a profile of PFOS immunotoxicity showing effects at levels reported in humans and identifies the B-cells as a potential target.

Journal Article

Abstract  Perfluoroalkyl substances are globally distributed anthropogenic contaminants. Their production and use have increased dramatically from the early 1980s. While many recent publications have reported concentrations of perfluorooctane sulfonate (PFOS) and other perfluoroalkyl acids (PFAs) in biotic and abiotic samples, only limited work has addressed temporal trends. In this study we analyzed archived polar bear(Ursus maritimus) livertissue samples from two geographic locations in the North American Arctic, collected from 1972 to 2002. The eastern group, taken from the vicinity of northern Baffin Island, Canada, comprised 31 samples, and the western group, from the vicinity of Barrow, Alaska, comprised 27 samples. Samples were analyzed for perfluorocarboxylic acids (PFCAs) from carbon chain length C8 to C15, perfluorohexane sulfonate, PFOS, the neutral precursor perfluorooctane sulfonamide (PFOSA), as well as 8:2 and 10:2 fluorotelomer acids and their alpha,beta unsaturated acid counterparts. Concentrations of PFOS and PFCAs with carbon chain lengths from C9 to C11 showed an exponential increase between 1972 and 2002 at both locations. Doubling times ranged from 3.6 +/- 0.9 years for perfluorononanoic acid in the eastern group to 13.1 +/- 4.0 years for PFOS in the western group. PFOSA showed decreasing concentrations over time at both locations, while the remaining PFAs showed no significant trends or were not detected in any sample. The doubling time for PFOS was similar to the doubling time of production of perfluoroctylsulfonyl-fluoride-based products during the 1990s.

Journal Article

Abstract  BACKGROUND: The C8 Health Project was created, authorized, and funded as part of the settlement agreement reached in the case of Jack W. Leach, et al. v. E.I. du Pont de Nemours & Company (no. 01-C-608 W.Va., Wood County Circuit Court, filed 10 April 2002). The settlement stemmed from the perfluorooctanoic acid (PFOA, or C8) contamination of drinking water in six water districts in two states near the DuPont Washington Works facility near Parkersburg, West Virginia.

OBJECTIVES: This study reports on the methods and results from the C8 Health Project, a population study created to gather data that would allow class members to know their own PFOA levels and permit subsequent epidemiologic investigations.

METHODS: Final study participation was 69,030, enrolled over a 13-month period in 2005-2006. Extensive data were collected, including demographic data, medical diagnoses (both self-report and medical records review), clinical laboratory testing, and determination of serum concentrations of 10 perfluorocarbons (PFCs). Here we describe the processes used to collect, validate, and store these health data. We also describe survey participants and their serum PFC levels.

RESULTS: The population geometric mean for serum PFOA was 32.91 ng/mL, 500% higher than previously reported for a representative American population. Serum concentrations for perfluorohexane sulfonate and perfluorononanoic acid were elevated 39% and 73% respectively, whereas perfluorooctanesulfonate was present at levels similar to those in the U.S. population.

CONCLUSIONS: This largest known population study of community PFC exposure permits new evaluations of associations between PFOA, in particular, and a range of health parameters. These will contribute to understanding of the biology of PFC exposure. The C8 Health Project also represents an unprecedented effort to gather basic data on an exposed population; its achievements and limitations can inform future legal settlements for populations exposed to environmental contaminants.

Journal Article

Abstract  Thyroid hormone is well-known to play essential roles in brain development. Therefore, environmental factors that interfere with thyroid function or thyroid hormone action may produce deleterious effects on brain development by interfering with thyroid hormone action in the developing brain. The purpose of this review is to identify in broad terms the gaps in our knowledge of thyroid hormone action in brain development, to relate these gaps to present information on thyroid disruption, and to review briefly our recent research that is germane to these issues. The endocrinology of the thyroid system is first reviewed briefly with an emphasis on the neuroendocrine and extrathyroidal mechanisms controlling circulating levels of thyroid hormones. The second section reviews the evidence that thyroid hormone is important for fetal, as well as neonatal, brain development. We review the mechanism of thyroid hormone action in the third section and briefly relate this information to information about the mechanism of thyroid hormone action on brain development. In the final section, we review the endocrinology of thyroid disruption with an emphasis on disruption of thyroid hormone action.

Journal Article

Abstract  The concentrations of four perfluorinated sulfonate acids (PFSAs) and 10 perfluorinated carboxylate acids (PFCAs) were measured in water and sediment samples from Liao River and Taihu Lake, China. In the water samples from Taihu Lake, PFOA and PFOS were the most detected perfluorinated compounds (PFCs); in Liao River, PFHxS was the predominant PFC followed by PFOA, while PFOS was only detected in two of the samples. This suggests that different PFC products are used in the two regions. PFOS and PFOA in both watersheds are at similar level as in the rivers of Japan, but significantly lower than in Great Lakes. The contributions of PFOS and long chain PFCAs in sediments were much higher than in water samples of both watersheds, indicating preferential partition of these PFCs in sediment. The concentrations of PFOS and PFOA were three orders of magnitude of lower than that of polycyclic aromatic hydrocarbons in the same sediments. The average sediment-water partition coefficients (log K(oc)) of PFHxS, PFOS and PFOA were determined to be 2.16, 2.88 and 2.28 respectively.

  • <<
  • 3 of 102
  • >>
Filter Results