PFUnA

Project ID

2609

Category

PFAS

Added on

Aug. 9, 2017, 6:47 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  A time trend study focusing on ski waxing technicians' exposure to perfluorinated chemicals (PFCs) from fluorinated wax fumes was performed in 2007/2008. Levels of eight perfluorocarboxylates and three perfluorosulfonates were analyzed in monthly blood samples from eight technicians. Samples were collected before the ski season, i.e., preseason, then at four FIS World Cup competitions in cross country skiing, and finally during an unexposed 5-month postseason period. The perfluorinated carboxylates perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) bioaccumulate, and continued exposure may contribute to elevated levels in ski technicians compared to the general population. The wax technicians' median blood level of PFOA is 112 ng/mL compared to 2.5 ng/mL in the general Swedish population. A significant correlation was found between number of working years and levels of perfluorocarboxylates. The PFOA levels in three technicians with "low" initial levels of PFOA (<10.0 ng/mL in preseason blood) increased by 254, 134, and 120%, whereas five technicians with "high" initial levels (>100 ng/mL in preseason sample) were at steady state. PFHxA is suggested to have a short half-life in humans relative the other perfluorocarboxylates. The levels of perfluorosulfonates were unaffected by the wax exposure.

Journal Article

Abstract  Determining maternal concentrations of per- and polyfluoroalkyl substances (PFASs) and the relative impact of various demographic and dietary predictors is important for assessing fetal exposure and for developing proper lifestyle advisories for pregnant women. This study was conducted to investigate maternal PFAS concentrations and their predictors in years when the production and use of several PFASs declined, and to assess the relative importance of significant predictors. Blood from 391 pregnant women participating in The Northern Norway Mother-and-Child Contaminant Cohort Study (MISA) was collected in the period 2007-2009 and serum analyses of 26 PFASs were conducted. Associations between PFAS concentrations, sampling date, and demographic and dietary variables were evaluated by multivariate analyses and linear models including relevant covariates. Parity was the strongest significant predictor for all the investigated PFASs, and nulliparous women had higher concentrations compared to multiparous women (10 ng/mL versus 4.5 ng/mL in median PFOS, respectively). Serum concentrations of PFOS and PFOA of women recruited day 1-100 were 25% and 26% higher, respectively, compared to those women recruited in the last 167 days of the study (day 601-867), and the concentrations of PFNA, PFDA and PFUnDA increased with age. Dietary predictors explained 0-17% of the variation in concentrations for the different PFASs. Significantly elevated concentrations of PFOS, PFNA, PFDA and PFUnDA were found among high consumers of marine food. The concentrations of PFHxS, PFHpS and PFNA were also increased in high consumers of game and elevated concentrations of PFHpS and PFOS were detected in high consumers of white meat. Study subjects with a high intake of salty snacks and beef had significantly higher concentrations of PFOA. The present study demonstrates that parity, sampling date and birth year are the most important predictors for maternal PFAS concentrations in years following a decrease in production and use of several PFASs. Further, dietary predictors of PFAS concentrations were identified and varied in importance according to compound.

Journal Article

Abstract  Photochemical decomposition of persistent and bioaccumulative long-chain (C9-C11) perfluorocarboxylic acids (PFCAs) with persulfate ion (S2O8(2-)) in an aqueous/liquid CO2 biphasic system was examined to develop a technique to neutralize stationary sources of the long-chain PFCAs. The long-chain PFCAs, namely, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUA), which are used as emulsifying agents and as surface treatment agents in industry, are relatively insoluble in water but are soluble in liquid CO2; therefore, introduction of liquid CO2 to the aqueous photoreaction system reduces the interference of colloidal PFCA particles. When the biphasic system was used to decompose these PFCAs, the extent of reaction was 6.4-51 times as high as that achieved in the absence of CO2. In the biphasic system, PFNA, PFDA, and PFUA (33.5-33.6 micromol) in 25.0 mL of water were 100%, 100%, and 77.1% decomposed, respectively, after 12 h of irradiation with a 200-W xenon-mercury lamp; F- ions were produced as a major product, and short-chain PFCAs, which are less bioaccumulative than the original PFCAs, were minor products. All of the initial S2O8(2-) was transformed to SO42-. The system also efficiently decomposed PFCAs at lower concentrations (e.g., 4.28-16.7 micromol of PFDA in 25.0 mL) and was successfully applied to decompose PFNA in floor wax.

Journal Article

Abstract  BACKGROUND, AIM AND SCOPE: Perfluorinated compounds (PFCs) are global environmental pollutants that bioaccumulate in wildlife and humans. Laboratory experiments have revealed toxic effects such as delayed development, humoral suppression, and hepatotoxicity. Although numerous human blood levels have been reported, little is known about distribution in the human body. Knowledge about PFC distribution and accumulation in the human body is crucial to understanding uptake and subsequent effects as well as to conduct risk assessments. The present study reports PFC levels in human liver and breast milk from a general population living in Catalonia, Spain. Liver and milk levels are compared to previously reported levels in blood from the same geographic area as well as to other existing reports on human liver and milk levels in other countries.

MATERIALS AND METHODS: Human liver (n = 12) and milk (n = 10) samples were collected in 2007 and 2008 in Catalonia, Spain. Liver samples were taken postmortem from six males and six females aged 27-79 years. Milk samples were from healthy primipara women (30-39 years old). Both liver and milk were analyzed by solid-phase extraction and ultra-performance liquid chromatography tandem mass spectrometry.

RESULTS: Six PFCs were detected in liver, with perfluorooctanesulfonate (PFOS, 26.6 ng/g wet weight) being the chemical with the highest mean concentration. Other PFCs such as perfluorohexanesulfonate (PFHxS), perfluorooctanoic acid (PFOA), and acids with chain lengths up to C11 were also detected, with mean levels ranging between 0.50 and 1.45 ng/g wet weight. On the other hand, PFOS and PFHxS were the only PFCs detected in human milk, with mean concentrations of 0.12 and 0.04 ng/mL, respectively.

DISCUSSION: While milk concentrations were similar to reported levels from other countries, liver samples contained more PFCs above quantification limits and higher PFOS concentrations compared to the only two other reports found in the literature. Differences between the results of the present study and those concerning previous investigations can be due to declining levels of some PFCs, which have been reported for the USA. The relationship between PFC concentrations in human liver, milk, and blood was assessed using blood concentrations previously determined in Catalonia. Those levels resulted in liver/serum ratios of 1.7:1, 1.4:1, and 2.1:1 for PFOS, perfluorodecanoic acid, and perfluoroundecanoic acid, respectively. Accumulation in liver is suggested for PFOS and the perfluorocarboxylic acids with carbon chain lengths C9, C10, and C11. For PFOA and PFHxS, fivefold and 14-fold higher concentrations, respectively, were seen in serum as compared to liver. The mean concentration of PFOS and PFHxS in milk was only 0.8% and 0.6% of the reported mean serum level, respectively.

CONCLUSIONS: The results of the present study show that several PFCs could be detected in human liver samples of subjects living in Tarragona. Concerning human milk, the mechanism by which PFCs are transferred from mother's blood to breast milk is still unclear. Considering that PFCs are strongly bound to the protein fraction in blood, the possibility of PFCs entering the milk and accumulating to levels observed in maternal plasma is limited.

RECOMMENDATIONS AND PERSPECTIVES: Interestingly, the potential accumulation difference for PFCs with different chain lengths might be of great importance for risk assessment. Continuing studies on the distribution of different PFCs in human tissue are therefore justified.

DOI
Journal Article

Abstract  A pre-sampling isotope dilution-direct injection-liquid chromatography tandem mass spectrometry (DI-LC/MS/MS) analytical method for the analysis of perfluorinated compounds (PFCs) in water is presented. This pre-sampling isotope dilution method incorporates stable isotope internal standards (ISs) and surrogate recovery standards (SRSs) added to sample bottles prior to sample collection. Pre-sampling isotope dilution corrects for PFC adsorption losses and enables a simple quantitative DI-LC/MS/MS water method with a 28 day sample holding time. Method analytes include perfluorinated carboxylic acids (PFCAs) (C4-C12), perfluorinated sulfonic acids (PFSAs) (C4, C6, and C8), perfluorooctane sulfonamide (PFOSA), and four SRSs ([2,3,4-C-13(3)]PFBA, [1,2,3,4-C-13(4)]PFOA, [1,2,3,4-C-13(4)]PFOS, and [1,2-C-13(2)]PFUnA). At 28 day sample holding times, mean recoveries of laboratory reagent water samples (Milli-Q (TM) water containing hardness at 165 mg equivalent CaCO3 L-1) fortified with the PFC method analytes at 0.2-40 ng mL(-1) (0.1-1 ng mL(-1) SRSs) are 94.9-115% with relative standard deviations of 0.97-7.9%. At 28 day sample holding times in fortified laboratory reagent water samples, single laboratory lowest concentration minimum reporting levels of 0.010-0.020 ng mL(-1) (0.075 ng mL(-1) PFBA) are demonstrated for method analytes and SRSs. Method applications to synthetic chlorinated drinking water samples and three environmental sample matrices are presented that demonstrate method ruggedness. Mean recoveries of synthetic chlorinated drinking water samples fortified with the PFC method analytes at 0.1-10 ng mL(-1) and SRSs at 0.1-1 ng mL(-1) are 97.8-113% with relative standard deviations of 2.0-18%. Mean recoveries and relative standard deviations in environmental groundwater samples, production facility non-contact cooling water effluent samples, and production facility wastewater treatment effluent samples fortified with the PFC method analytes at 0.25-2.5 ng mL(-1), 0.25-10 ng mL(-1), 0.25-50 ng mL(-1) respectively and SRSs at 0.1 ng mL(-1) are 100 +/- 7.7% (RSD +/- 12%, PFBA +/- 23%), 100 +/- 5.5% (RSD +/- 11%), 100 +/- 5.2% (RSD +/- 11%) respectively. Excellent method correlation was obtained with USEPA Method 537 in a comparative analysis of synthetic chlorinated drinking water samples aged 7 days and fortified with C6-C12 PFCAs and C4, C6, and C8 PFSAs, and three SRSs [C-13(4)] PFOA, [C-13(2)] PFUnA, and [C-13(4)] PFOS at 0.1 ng mL(-1). The average absolute difference between the EPA Method 537 and DI-LC/MS/MS measurements for the method analytes and SRSs was 8%.

DOI
Journal Article

Abstract  Twenty poly- and perfluorinated compounds (PFCs) were investigated in four red-throated divers (Gavia stellata) from the German Baltic Sea sampled in 2005. Concentrations of perfluoroalkyl sulfonates (PFSAs), perfluoroalkyl carboxylates (PFCAs), alkylated perfluoroalkyl sulfonamides, alkylated perfluoroalkyl sulfonamidoethanols and perfluorooctane sulfonamides were determined in blood, brain, fatty tissue, gall bladder, heart, kidney, liver, lung, muscle and spleen by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). For quantification standard addition was applied. Twelve compounds were detected with average total PFC concentrations ranging from 42 ng g(-1) in muscle to 220 ng g(-1) in liver samples. Perfluorooctane sulfonate (PFOS) was the major compound in each of the 40 tissue samples. Except for brain, perfluoroundecanoate was the dominant PFCA. In brain samples preferential enrichment of long-chain PFSAs and PFCAs was observed. The total PFC body burden was estimated to 100 +/- 39 mu g. Multivariate statistical analyses supported the identification of the preferred accumulation 'location' of individual PFCs in the birds' body.

Journal Article

Abstract  Background Charleston Harbor has elevated concentrations of PFAS in dolphins, but local human exposure data are limited. Objectives We sought to describe PFAS serum concentrations’ temporal trends among Gullah African American residents of coastal South Carolina. Methods Longitudinal measures of PFAS in blood serum from a Gullah clinical sample, without lupus, were examined using spaghetti plots and visit-to-visit change scores (e.g., differences in concentrations between visits) among the 68 participants with repeated measures available. We also modeled population-level trends among the 71 participants with any data using proportionate percentile models, accounting for clustering through robust standard errors. In a post-hoc analysis we examined heterogeneity of temporal trends by age through mixed-effects models for the log-transformed PFAS compounds. Results Population concentrations of PFOS dropped approximately 9 (95% CI: 8, 10) percent each year over 2003–2013. This was concordant with individual PFOS trajectories (median PFOS change score −21.7 ng/g wet weight, interquartile range of PFOS change scores: −32.8, −14.9) and reports for other populations over this time period. Several other compounds including PFOA, PFHxS, and PFuNDA also showed a population-level decrease. However, examination of individual trajectories suggested substantial heterogeneity. Post-hoc analyses indicated that PFAS trajectories were heterogeneous by age. Conclusions Many PFAS compounds are decreasing in a sample of Gullah African Americans from coastal South Carolina. There may be age differences in the elimination kinetics of PFASs. The possible role of age as a modifier of PFAS serum trends merits further research.

Journal Article

Abstract  Perfluoroalkyl acids (PFAAs) are a large group of chemicals which are highly persistent in both nature and humans. The use of the most prominent ones, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), was reduced in the early 21st century, and since then levels in human matrices have decreased. However, these two compounds have been exchanged by other PFAAs, for which time trends have not been as extensively investigated. By the use of 80 plasma samples collected between 1987 and 2007 from healthy women (n=1-9 yearly for 1987-2001, n=15 from 2006, and n=10 from 2007), possible time trends of six PFAAs were assessed. Time trends were evaluated for the entire study period, as well as for three sub-periods. As seen in previous studies, levels of perfluorohexane sulfonate (PFHxS), PFOS, and PFOA peaked during the middle time period (1990-2000), with medians of 0.98 ng mL(-1), 18.06 ng mL(-1), and 3.73 ng mL(-1), respectively. However, levels of perfluorononanic acid (PFNA), perfluorodecanic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) increased over the whole study period and most markedly so after year 2000, with medians of 0.73 ng mL(-1), 0.28 ng mL(-1), and 0.24 ng mL(-1), respectively, during the last study period.

Journal Article

Abstract  Eleven perfluorinated alkyl acids (PFAAs) were analyzed in plasma from a total of 600 American Red Cross adult blood donors from six locations in 2010. The samples were extracted by protein precipitation and quantified by using liquid chromatography tandem mass spectrometry (HPLC/MS/MS). The anions of the three perfluorosulfonic acids measured were perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS). The anions of the eight perfluorocarboxylic acids were perfluoropentanoate (PFPeA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA). Findings were compared to results from different donor samples analyzed at the same locations collected in 2000-2001 (N = 645 serum samples) and 2006 (N = 600 plasma samples). Most measurements in 2010 were less than the lower limit of quantitation for PFBS, PFPeA, PFHxA, and PFDoA. For the remaining analytes, the geometric mean concentrations (ng/mL) in 2000-2001, 2006, and 2010 were, respectively, PFHxS: (2.25, 1.52, 1.34); PFOS (34.9, 14.5, 8.3); PFHpA (0.13, 0.09, 0.05); PFOA (4.70, 3.44, 2.44); PFNA (0.57, 0.97, 0.83); PFDA (0.16, 0.34, 0.27), and PFUnA (0.10, 0.18, 0.14). The percentage decline (parentheses) in geometric mean concentrations from 2000-2001 to 2010 were PFHxS (40%), PFOS (76%), and PFOA (48%). The decline in PFOS suggested a population halving time of 4.3 years. This estimate is comparable to the geometric mean serum elimination half-life of 4.8 years reported in individuals. This similarity supports the conclusion that the dominant PFOS-related exposures to humans in the United States were greatly mitigated during the phase-out period.

Journal Article

Abstract  This study aimed to quantify concentrations of fifteen perfluoroalkyl acids (PFAAs) in the plasma of American alligators (Alligator mississippiensis) inhabiting wetlands surrounding the Kennedy Space Center (KSC) in Florida, USA located at Merritt Island National Wildlife Refuge (MINWR). Approximately 10 male and 10 female alligators (ntotal = 229) were sampled each month during 2008 and 2009 to determine if seasonal or spatial trends existed with PFAA burden. PFOS represented the highest plasma burden (median 185 ng/g) and PFHxS the second highest (median 7.96 ng/g). While no significant seasonal trends were observed, unique spatial trends emerged. Many of the measured PFAAs co-varied strongly together and similar trends were observed for PFOS, PFDA, PFUnA, and PFDoA, as well as for PFOA, PFHxS, PFNA, PFTriA, and PFTA, suggesting more than one source of PFAAs at MINWR. Higher concentrations of PFOS and the PFAAs that co-varied with PFOS were collected from animals around sites that included the Shuttle Landing Facility (SLF) fire house and the Neil Armstrong Operations and Checkout (O&C) retention pond, while higher concentrations of PFOA and the PFAA that co-varied with PFOA were sampled from animals near the gun range and the old fire training facility. Sex-based differences and snout-vent length (SVL) correlations with PFAA burden were also investigated.

Journal Article

Abstract  The effects of four types of dissolved organic matters (DOM) on the bioconcentration of perfluoroalkyl substances (PFASs) in Chironomus plumosus larvae have been studied. The PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA). The DOM included humic acid (HA), fulvic acid (FA), tannic acid (TA), and a protein, peptone (PEP), and their concentrations ranged from 0 to 50 mg L(-1). The results showed that, upon bioconcentration equilibrium, the body burdens of longer perfluoroalkyl chain PFASs (PFOS, PFDA, PFUnA and PFDoA) decreased with PEP and HA concentrations while increased with FA and TA concentrations. When FA and TA concentrations increased from 0 to 50 mg L(-1), body burdens of these PFASs increased by 7.5%-148.8% and 5.7%-37.1%, respectively. However, the DOM had no significant impact on the body burdens of shorter perfluoroalkyl chain PFASs (PFOA and PFNA). All of the four types of DOM lowered not only the uptake rate constants (ku) of PFASs due to the decrease of freely dissolved PFAS concentrations, but also the elimination rate constants (ke) due to the inhibition effect of DOM on the PFAS elimination from the larvae. The reduction in the two constants varied with both DOM and PFAS types. In the presence of PEP and HA with larger molecular weights, the ku values decreased more than ke, leading to the decreased body burdens of longer perfluoroalkyl chain PFASs. As for FA and TA with smaller molecular weights, the ke values decreased more than ku, resulting in increased body burdens of longer perfluoroalkyl chain PFASs. This study suggests that the effects of DOM on PFAS bioconcentration depend not only on the concentration but also on the molecule weight of DOM, which should be considered in the bioavailability assessment of PFASs.

Journal Article

Abstract  Time-series of perfluorinated alkylated substances (PFASs) in East Greenland polar bears and East and West Greenland ringed seals were updated in order to deduce whether a response to the major reduction in perfluoroalkyl production in the early 2000s had occurred. Previous studies had documented an exponential increase of perfluorooctane sulphonate (PFOS) in liver tissue from both species. In the present study, PFOS was still the far most dominant compound constituting 92% (West Greenland ringed seals), 88% (East Greenland ringed seals) and 85% (East Greenland polar bears). The PFOS concentrations increased up to 2006 with doubling times of approximately 6 years for the ringed seal populations and 14 years in case of polar bears. Since then a rapid decrease has occurred with clearing half-lives of approximately 1, 2 and 4 years, respectively. In polar bears perfluorohexane sulphonate (PFHxS) and perfluorooctane sulphonamide (PFOSA) also showed decreasing trends in recent years as do perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnA). For the West Greenland ringed seal population perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), PFDA and PFUnA peaked in the mid 2000s, whereas PFNA, PFDA and PFUnA in the East Greenland population have been stable or increasing in recent years. The peak of PFASs in Greenland ringed seals and polar bears occurred at a later time than in Canadian seals and polar bears and considerably later than observed in seal species from more southern latitudes. We suggest that this could be explained by the distance to emission hot-spots and differences in long-range transport to the Arctic.

Journal Article

Abstract  Numerous studies have reported on the global distribution, persistence, fate, and toxicity of perfluoroalkyl and polyfluoroalkyl substances (PFASs). However, studies on PFASs in terrestrial mammals are scarce. Rats can be good sentinels of human exposure to toxicants because of their habitat, which is in close proximity to humans. Furthermore, exposure data measured for rats can be directly applied for risk assessment because many toxicological studies use rodent models. In this study, a nationwide survey of PFASs in the blood of wild rats as well as surface water samples collected from rats' habitats from 47 prefectures in Japan was conducted. In addition to known PFASs, combustion ion chromatography technique was used for analysis of total fluorine concentrations in the blood of rats. In total, 216 blood samples representing three species of wild rats (house rat, Norway rats, and field mice) were analyzed for 23 PFASs. Perfluorooctanesulfonate (PFOS; concentration range <0.05-148 ng/mL), perfluorooctane sulfonamide (PFOSA; <0.1-157), perfluorododecanoate (<0.05-5.8), perfluoroundecanoate (PFUnDA; <0.05-51), perfluorodecanoate (PFDA; <0.05-9.7), perfluorononanoate (PFNA; <0.05-249), and perfluorooctanoate (PFOA) (<0.05-60) were detected >80 % of the blood samples. Concentrations of several PFASs in rat blood were similar to those reported for humans. PFSAs (mainly PFOS) accounted for 45 % of total PFASs, whereas perfluoroalkyl carboxylates (PFCAs), especially PFUnDA and PFNA, accounted for 20 and 10 % of total PFASs, respectively. In water samples, PFCAs were the predominant compounds with PFOA and PFNA found in >90 % of the samples. There were strong correlations (p < 0.001 to p < 0.05) between human population density and levels of PFOS, PFNA, PFOA, and PFOSA in wild rat blood.

Journal Article

Abstract  This study examined the effect of five types of carbonaceous materials (CMs) in sediment on bioaccumulation of perfluorochemicals (PFCs) by Chironomus plumosus larvae. The CMs included two multiwalled carbon nanotubes (MWCNT10 and MWCNT50), maize straw- and willow-derived chars, and maize straw-origin ash. The PFCs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA). The CMs with different concentrations (0-1.5% dry weight) were amended into sediments spiked with PFCs and aged for 60 d. The uptake rate constants (k(s)) for each PFC to larvae differed with different CM amendments (p < 0.05), while elimination rate did not change significantly (p > 0.05). Decreasing PFC concentration in larvae (C(B)) was found with increasing CM concentration (f(CM)) in the sediments, and a linear positive correlation existed between 1/C(B) and f(CM) (p < 0.05). The effect of CMs on PFC bioaccumulation agreed well with the CM properties; MWCNT10 with the highest specific surface area resulted in the lowest k(s) values and biota-sediment accumulation factors (BSAF), with a BSAF reduction of 66%-97% by a 1.5% amendment. The mechanism was explored by analyzing the aqueous phase concentrations of PFCs and the sorption of PFCs on sediments amended with CMs. The results suggested that the decreasing trend of PFCs in larvae was caused by the decreasing aqueous phase concentration with increasing CM concentration. In the studied conditions with low PFC concentrations, the bioaccumulation of PFCs was a linear partitioning between pore water and biota, and the sorption of PFCs to the sediment/CM mixtures was a two domain linear distribution. This study suggests that both the type and concentration of carbonaceous materials in sediment can affect the bioaccumulation of PFCs to benthic organisms through changing their aqueous phase concentrations.

Journal Article

Abstract  Despite the reports of the occurrence of perfluorochemicals (PFCs) in industrialized nations, information on PFCs in less industrialized countries is meager. In the present study, concentrations and profiles of PFCs were investigated in surface waters (rivers, lakes, coastal seas and untreated sewage; n=42) including the Ganges River water, and biota such as shrimp (n=2), fish (n=28), and Ganges River dolphin (Platanista gangetica; n=15). PFOS was the dominant PFC found in most of the samples analyzed including water samples except untreated sewage (water: <0.04-3.91 ng L(-1); biota: 0.248-27.9 ng g(-1) ww). Long-chain (C11-C18) perfluorocarboxylates (PFCAs) were not detected in the water samples (<0.2 ng L(-1)), although PFDA (0.061-0.923 ng g(-1) ww) and PFUnDA (0.072-0.998 ng g(-1) ww) were found in biological samples The arithmetic mean PFOS concentration found in the liver of Ganges River dolphin was 27.9 ng g(-1) ww. Bioconcentration and biomagnifications factors of PFCs were estimated in the Ganges River basin food web. The highest concentration of PFOA, 23.1 ng L(-1), was found in untreated sewage samples. Overall, concentrations of PFCs of water and biological samples from India are lower than the concentrations reported for other countries so far. PFC profiles in Indian waters are dominated by PFOS, followed by PFOA, which is different from the pattern reported for other countries such as Korea, Japan and USA, where PFOA was the predominant compound in waters. The flux estimates for PFOS, PFOA and PFNA from the Ganges River in India to the Bay of Bengal were in the range of several hundreds of kilograms per year.

DOI
Journal Article

Abstract  A sensitive method was established for the separation and determination of nine perfluorinated compounds (PFCs) in blood samples. Perfluorohexane sulfonate (PFHxS), perfluorohetanoic acid (PFHpA), perfluorooctanoate (PFOA), perfluorooctane sulfonat (PFOS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecnaoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA) and perflouorotetradodecanoic acid(PFTA) were detected by high performance liquid chromatography/electrospray tandem mass spectrometry (HPLC ESI MS/MS) with C(18) reversed phase column in 15 min, using (13)C(4) labeled PFOS (MPFOS) as the internal standard. PFCs in the blood samples were further extracted with solid phase extraction cartridges after traditional MTBE extraction before injection. Four kinds of cartridges were tested, including RP, P, C(18) and HLB, then HLB cartridge was selected as the efficient adsorbent. A comparative study of two C(18) columns, Acclaim 120 (50 mm x 4.6 min, 3 mu m) and Acclaim 120 (250 mm x 4.6 mm, 5 mu m) column, were also performed. Both columns provided similar sensitivities, with the detection limits of 0.03 -0.8 mu g/L for real blood samples. The relative standard deviation of recoveries ranged from 3% to 11%. Finally, Acclaim 120 (250 mm x 4.6 mm, 5 mu m) column was chosen for its superiority of column capacity. With the optimal conditions, the recoveries of PFCs in blood samples ranged from 74.2% to 118.1%, with the exception of PFTA, which was only about 60%.

DOI
Journal Article

Abstract  A novel method was developed for solid-phase extraction (SPE) of perfluorinated compounds (PFCs) from environmental water samples using cetyltrimethylammonium bromide (CTAB) coated Fe3O4 nanoparticles (Fe3O4 NPs) as an adsorbent. The magnetic nanosized adsorbent has a large surface area and superparamagnetic properties. This gives it a high extraction capacity and allows for convenient isolation by a magnetic field. Compared with other SPE methods and our previous work on PFCs, this method exhibited a fairly good analytical performance and required a small amount of sorbent (50 mg) and short pretreatment times (30 min) for 800 mL environmental water samples. Seven PFCs, including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), and perfluorotetradecanoic acid (PFTA), extracted by the optimized method were determined by high-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC/ESI-MS/MS). A concentration factor of 1600 was achieved when extracting 800 mL of several environmental water samples. Detection limits obtained for PFOA, PFOS, PFNA, PFDA, PFUnDA, PFDoDA and PFTA were 0.14, 0.022, 0.31, 0.23, 0.11, 0.16, 0.091 ng/L, respectively. The relative standard deviations of recoveries ranged from 1 to 8%, indicating good method precision. (C) 2011 Elsevier B.V. All rights reserved.

Journal Article

Abstract  Perfluoroalkyl acids (PFAAs) have been observed in various environmental matrices globally in recent years. In this study, the levels, spatial distribution tendencies, and partitioning characteristics of the target 12 PFAAs were investigated in water and sediment from the coastal regions of Shandong peninsula in China, and two sediment core samples were also collected to study the vertical and historical variation of PFAAs. The ranges (means) of total PFAA concentrations were 23.69-148.48 ng/L (76.11 ng/L) in the water and 1.30-11.17 ng/g (5.93 ng/g) in the surface sediment, respectively. Among the target 12 PFAAs, perfluorooctanoic acid (PFOA) was the dominant component in water, followed by perfluorooctane sulfonate (PFOS) and perfluorohexanoic acid (PFHxA). PFOS, perfluoroundecanoic acid, and PFOA were the dominant components in sediment. For their spatial distribution, higher levels of PFAAs were found at the locations close to much developed cities. The PFAA concentrations showed an overall decreasing tendency with depth increase in the two sediment cores, which indicates that the extent of PFAAs pollution is aggravating trend in recent years. Results of the partition coefficient (K d ) show that the compounds with longer carbon chains (C ≥ 7) generally had higher K d values, which suggest that long-chain PFAAs are prone to be adsorbed by sediment. In addition, the Log K d of PFHxA, PFOA, and PFOS were significantly and positively correlated to the salinity of the water. The results of risk assessment suggest appreciable risk of PFAAs to the local ecosystem.

Journal Article

Abstract  Biodegradation of fluorinated polymers is of interest to assess them as a potential source of perfluorocarboxylates (PFCAs) in the environment. A fluoroacrylate polymer product test substance was studied in four aerobic soils over two years to assess whether the fluorotelomer alcohol (FTOH) side chains covalently bonded to the polymer backbone may be transformed to form PFCAs. The test substance itself was not directly measured; instead, nine analytes were determined to evaluate biodegradation. Terminal biotransformation products measured included perfluorooctanoate (PFO), perfluorononanoate (PFN), perfluorodecanoate (PFD), perfluoroundecanoate (PFU), and pentadecafluorodecanoate (7-3 acid). The molar concentration of 8-2 fluorotelomer alcohol (8-2 FTOH) in the test substance, fluoroacrylate polymer and residual unreacted raw materials and impurities ("residuals") were compared with the molar concentrations of the terminal biotransformation products for mass balance and kinetic assessments. Over the two year time frame of the experimental study, the fluoroacrylate polymer showed a slight extent of potential biodegradation under the experimental conditions of the study. A biodegradation half-life of 1200-1700 years was calculated for the fluoroacrylate polymer based on the rate of formation of PFO in aerobic soils. When the degradation rates of the fluoroacrylate polymer and residuals were applied to estimated total historic fluoroacrylate polymer production, use and disposal,the biodegradation of fluoroacrylate polymer and residuals is calculated to contribute less than 5 tonnes of PFO per year globally to PFCAs present in the environment.

Journal Article

Abstract  Water, sediment, various tissues of fish, crustacean, gastropod and bivalve were collected from major river basins in Vietnam and analyzed for the presence of perfluorinated alkyl substances (PFASs). Furthermore, the occurrence of PFASs in coastal, tap and well waters collected from eight different regions in Vietnam was investigated. PFOA and PFOS were consistently detected as the dominant PFASs in surface waters. The greatest concentrations of PFOA (53.5ngL(-1)) and PFOS (40.2ngL(-1)) were found in a surface water sample collected from a channel that receives wastewater treatment plant discharges. PFOS and PFHxS were found as the predominant PFASs in sediments. The greatest PFAS concentration in biota was 16.9ng PFUnDA g(-1) wet weight found in a fish liver. Some long-chain PFCAs including PFNA, PFUnDA and PFTrDA as well as PFHxS were more abundant than short-chain PFASs in biota tissues. The measured concentrations of PFOS and PFOA in surface and tap waters were below the provisional health advisory. The rank order of mean bioconcentration factor of PFOS in biota was; crustacean (115L/kg), gastropod (1117L/kg), fish (1120L/kg) and bivalve (2110L/kg). This study provides baseline information for a better understanding of PFASs contamination in Vietnam.

Journal Article

Abstract  BACKGROUND: Perfluoroalkyl substances (PFASs) are pollutants that tend to accumulate in the environment and organisms. The animal and human studies to date have focused on thyroid function, but the results are inconsistent.

METHODS: A sample of 118 mother-infant pairs was obtained from the Taiwan Birth Panel Study (TBPS). Cord blood PFASs levels were evaluated using the Waters ACQUITY UPLC system coupled with a Waters Quattro Premier XE triple quadrupole mass spectrometer, and cord blood thyroid hormones were assessed using a Roche Analytics E170 modular analyser (Roche Diagnostics, Mannheim, Germany). PFASs concentrations were analysed in the final models to examine the associations between cord blood PFASs levels and thyroid hormone concentrations.

RESULTS: The cord blood perfluorooctane sulfonate (PFOS) concentration was negatively associated with the cord blood thyroxine (T4) concentration [per ln unit: adjusted β (95% confidence interval, CI) = -0.458(-0.916, -0.001)]. Moreover, the level of cord blood thyroid stimulating hormone (TSH) was positively associated with the cord blood PFOS concentration [per ln unit: adjusted β (95% confidence interval, CI) = 0.346(0.101, 0.592)]. The sex stratified effects of PFOS on T4 were suggestive of differential effects in high-exposure groups compared with low-exposure group in boys.

CONCLUSIONS: We found that cord blood thyroid hormone levels are affected by PFASs, with a negative association between T4 and PFOS and a positive association between TSH and PFOS. The causal associations of thyroid hormones and PFASs require further exploration.

Journal Article

Abstract  BACKGROUND: The link among perfluoroalkyl and polyfluoroalkyl substances (PFASs), abnormal glucose homeostasis and the risk of diabetes has been intensively debated with conflicting evidence.

OBJECTIVES: We evaluated the associations among PFASs, oral glucose tolerance testing (OGTT) curves and diabetes prevalence in 571 working-aged Taiwanese participants.

METHODS: Exposure measures included serum perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUA). Outcomes were OGTT curves and prevalent diabetes defined by fasting blood glucose (FBG) ≥126mg/dL, 2-h glucose ≥200mg/dL, or glycated hemoglobin ≥6.5%. Analyses were performed with multiple logistic regression and functional data analysis.

RESULTS: A total of 39 participants (6.8%) had diabetes in this study. After full adjustment, the increase in the geometric means of FBG, 2-h glucose concentrations, and area under the OGTT curve (AUC120) with a doubling increase in PFOS was 3% (95% CI 1-4), 8% (5-12), and 6% (4-9), respectively. Compared to the lowest-quartile of PFOS concentrations (<2.4ng/ml), the OGTT trajectories were significantly steeper in participants of the highest-quartile PFOS exposure (>4.8ng/ml) and the vertical shifting of the mean curve for each PFOS quartile showed a dose-response pattern. The adjusted odds ratio for diabetes comparing the highest to lowest quartile was 3.37 (95% CI 1.18-9.65). For PFOA, PFNA, and PFUA, the opposite pattern of OGTT trajectory and the opposite risk profile for diabetes were observed.

CONCLUSIONS: Chronic PFOS exposure was associated with impaired glucose homeostasis and the increased prevalence of diabetes. However, PFOA, PFNA, and PFUA showed a potential protective effect against glucose intolerance and the risk of diabetes. Future research focusing on clarifying possible differential effects of different species of PFASs on glucose homeostasis and establishing the prospective associations between PFASs and diabetes is needed.

Journal Article

Abstract  Polyfluorinated alkyl compounds (PFCs) are a group of chemicals of growing concern that have been detected in biological and abiotic samples worldwide. This study reports the concentrations of a suite of PFCs: perfluorooctyl sulfonate (PFOS), perfluorooctyl sulfonamide (PFOSA) and perfluorinated carboxylic acids (PFCAs) in guillemot (Uria aalge) eggs, collected in North-Western Europe, from Iceland, the Faroe Islands, Sweden and two locations in Norway. The highest concentrations of PFOS were found in samples from Sweden (mean 400 ng g(-1) wet weight (w.w.)), which were almost five times higher than concentrations found in Norwegian samples (mean 85 ng g(-1)w.w. from both sample sites). The concentrations found in Icelandic and Faroe samples were lowest (mean 16 and 15 ng g(-1)w.w., respectively). Only Swedish samples differed significantly from the other locations. In general, PFCAs show a different spatial trend than PFOS. Perfluorooctanoic acid (PFOA) was not detected in any sample and perfluorononanoic acid (PFNA) was only detected in samples from Sweden. The most abundant PFCA was perfluoroundecanoic acid (PFUA) with highest concentrations in samples from Sweden (mean 82 ng g(-1)w.w.), samples from the Faroe Islands had the second highest concentration (mean 57 ng g(-1)w.w.) and samples from Iceland and Norway had concentrations ranging between 18 and 30 ng g(-1)w.w. The original hypothesis was based on the idea that PFC concentrations are the highest close to more densely populated and industrialized areas and lower levels in remote areas. However, the geographic pattern is more complicated than predicted and varies among different PFCs.

  • <<
  • 2 of 12
  • >>
Filter Results