OPPT_1-Bromopropane (1-BP)_F. Human Health

Project ID

2547

Category

OPPT REs

Added on

March 7, 2017, 3:31 p.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Nucleoli in mammalian oocytes and zygotes, sometimes referred to as nucleolus precursor bodies (NPBs), are compact and morphologically different from nucleoli in somatic cells. We applied a unique NPB analyzing method "enucleolation" technique to zygotes to remove the NPBs. It has been reported that oocyte NPBs are essential for embryonic development; in their absence, the oocytes complete maturation and can be fertilized, but no nucleoli are formed in the zygotes and embryos, leading to developmental failure. However, we found that when NPBs were removed from zygotes, the zygotes developed successfully to live-born pups. These results indicated that oocyte NPBs are essential for embryonic development, but zygote NPBs are not. In addition, the enucleolated zygotes formed somatic-type nucleoli during early embryonic development, demonstrating that somatic-type nucleoli do not originate from zygote NPBs. We summarize our recent investigation on NPBs, and provide additional comments and findings.

Journal Article

Abstract  BACKGROUND AND AIMS: Patients with established coronary artery disease (CAD) are likely to receive a combination of aspirin, a statin, and blood pressure (BP)-lowering agents. Combining these pharmacologic agents into a cardiovascular combination pill, such as a polypill, could be considered to reduce prescription gaps and nonadherence in high-risk patients. We aimed to evaluate the effect of the concomitant use of aspirin, a statin, and BP-lowering agent(s) in patients with CAD on vascular morbidity and mortality in current clinical practice in an observational study to provide insights in the combination pill concept related to feasibility and applicability.

METHODS: In total, 2,706 patients with CAD enrolled in the Second Manifestations of ARTerial disease study were followed for the occurrence of a subsequent vascular event (ie, myocardial infarction, ischemic cerebrovascular accident, vascular death) and all-cause mortality. The relationship between combination therapy and cardiovascular events and all-cause mortality was assessed using Cox proportional hazards regression models to calculate hazards ratios (HRs) with a 95% CI. Both covariate and propensity score adjusting methods were used to reduce confounding by indication.

RESULTS: A combination of aspirin, a statin, and ≥1 BP-lowering agent(s) was used by 67% of the patients. During a median of 5.0 years (interquartile range 2.4-10.2 years), 347 vascular events occurred and 162 patients died. Combination therapy with aspirin, statin, and ≥1 BP-lowering agent was associated with a lower risk of myocardial infarction (HR 0.68, 95% CI 0.49-0.96), ischemic cerebrovascular accident (HR 0.37, 95% CI 0.16-0.84), composite vascular end point (HR 0.66, 95% CI 0.49-0.88), vascular mortality (HR 0.53, 95% CI 0.33-0.85), and all-cause mortality (HR 0.69, 95% CI 0.49-0.96) compared with the absence of combination therapy, after adjusting for confounding covariates in a propensity score. The use of 1 or only 2 components of combination therapy was associated with a higher risk for cardiovascular events compared with the combined use of aspirin, a statin, and ≥1 BP-lowering agent(s).

CONCLUSION: Two-thirds of the patients with CAD use a combination of aspirin, a statin, and ≥1 BP-lowering agent(s), components of a cardiovascular fixed-dose combination pill. Combination therapy with these agents is associated with a lower risk of vascular events and total mortality. Although treatment effect in observational studies should be interpreted with caution, the results of this study support supposed benefits from combination therapy. However, the effect of fixed-dose combination pill on clinical outcome needs to be demonstrated in randomized clinical trials.

Journal Article

Abstract  PURPOSE: To identiy the disease causing mutation in a Chinese family presenting with early-onset cataract and dental anomalies.

MATERIALS AND METHODS: A specific Hereditary Eye Disease Enrichment Panel (HEDEP) (personalized customization by MyGenostics, Baltimore, MD) based on targeted exome capture technology was used to collect the protein coding regions of 30 early-onset cataract associated genes, and high throughput sequencing was done with Illumina HiSeq 2000 platform. The identified variant was confirmed with Sanger sequencing.

RESULTS: A novel deletion in exon 4 (c.852delG) of NHS gene was identified; the identified 1 bp deletion altered the reading frame and was predicted to result in a premature stop codon after the addition of twelve novel amino acid (p.S285PfsX13). This mutation co-segregated in affected males and obligate female carriers, but was absent in 100 matched controls.

CONCLUSIONS: Our findings broaden the spectrum of NHS mutations causing Nance-Horan syndrome and phenotypic spectrum of the disease in Chinese patients.

Journal Article

Abstract  We performed genome-wide analyses to identify genomic loci that interact with sodium to influence blood pressure (BP) using single-marker-based (1 and 2 df joint tests) and gene-based tests among 1876 Chinese participants of the Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study. Among GenSalt participants, the average of 3 urine samples was used to estimate sodium excretion. Nine BP measurements were taken using a random zero sphygmomanometer. A total of 2.05 million single-nucleotide polymorphisms were imputed using Affymetrix 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panel. Promising findings (P<1.00×10(-4)) from GenSalt were evaluated for replication among 775 Chinese participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Single-nucleotide polymorphism and gene-based results were meta-analyzed across the GenSalt and MESA studies to determine genome-wide significance. The 1 df tests identified interactions for UST rs13211840 on diastolic BP (P=3.13×10(-9)). The 2 df tests additionally identified associations for CLGN rs2567241 (P=3.90×10(-12)) and LOC105369882 rs11104632 (P=4.51×10(-8)) with systolic BP. The CLGN variant rs2567241 was also associated with diastolic BP (P=3.11×10(-22)) and mean arterial pressure (P=2.86×10(-15)). Genome-wide gene-based analysis identified MKNK1 (P=6.70×10(-7)), C2orf80 (P<1.00×10(-12)), EPHA6 (P=2.88×10(-7)), SCOC-AS1 (P=4.35×10(-14)), SCOC (P=6.46×10(-11)), CLGN (P=3.68×10(-13)), MGAT4D (P=4.73×10(-11)), ARHGAP42 (P≤1.00×10(-12)), CASP4 (P=1.31×10(-8)), and LINC01478 (P=6.75×10(-10)) that were associated with at least 1 BP phenotype. In summary, we identified 8 novel and 1 previously reported BP loci through the examination of single-nucleotide polymorphism and gene-based interactions with sodium.

Journal Article

Abstract  Patients spend the vast majority of their hospital stay in an unmonitored bed where various mobility factors can impact patient safety and quality. Specifically, bed positioning and a patient's related mobility in that bed can have a profound impact on risks such as pneumonias, blood clots, bed ulcers and falls. This issue has been exacerbated as the nurse-per-bed (NPB) ratio has decreased in recent years. To help assess these risks, it is critical to monitor a hospital bed's positional status (BPS). Two bed positional statuses, bed height (BH) and bed chair angle (BCA), are of critical interests for bed monitoring. In this paper, we develop a bed positional status detection system using a single Microsoft Kinect. Experimental results show that we are able to achieve 94.5% and 93.0% overall accuracy of the estimated BCA and BH in a simulated patient's room environment.

Journal Article

Abstract  BACKGROUND: Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients.

METHODS: In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval.

RESULTS: ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls.

CONCLUSIONS: The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.

Journal Article

Abstract  H1.1 and H1.4 bind tightly to both short DNA oligomers and to CT-DNA (Ka≈1×10(7)). Binding is accompanied by an unfavorable enthalpy change (∆H≈+22 kcal/mol) and a favorable entropy change (-T∆S≈-30 kcal/mol). The Tm for the H1.4/CT-DNA complex is increased by 9 °C over the Tm for the free DNA. H1.4 titrations of the DNA oligomers yield stoichiometries (H1/DNA) of 0.64, 0.96, 1.29, and 2.04 for 24, 36, 48, and 72-bp DNA oligomers. The stoichiometries are consistent with a binding site size of 37±1 bp. CT-DNA titration data are consistent with binding site sizes of 32 bp for H1.1 and 36 bp for H1.4. The heat capacity changes, ΔCp, for formation of the H1.1 and H1.4/CT-DNA complexes are -160 cal mol(-1) K(-1) and -192 cal mol(-1)K(-1) respectively. The large negative ΔCp values indicate the loss of water from the protein DNA interface in the complex.

Journal Article

Abstract  BACKGROUND/AIM: Calcium acetate/magnesium carbonate (CaMg) is a recent phosphate binder that has been shown to have protective cardiovascular (CV) effects in animal models. The aim of this study was to evaluate the relationship between CaMg therapy and CV risk markers like pulse pressure (PP), left ventricular mass index (LVMI) and valvular calcifications compared to sevelamer or no phosphate binder (NPB) therapy in chronic hemodialysis (HD) patients.

METHODS: We performed a 48-month prospective study in 138 HD patients under hemodiafiltration with a dialysate Mg concentration of 0.5 mmol/l. Patients underwent treatment with CaMg or sevelamer for at least 36 months or NPB therapy. Demographic, clinical, biochemical and echocardiographic parameters were evaluated at baseline and after a 48-month period.

RESULTS: At the end of the study, patients who had taken CaMg showed a significant reduction in PP (p < 0.001), LVMI (p = 0.003), aortic (p = 0.004) and mitral valve calcifications (p = 0.03) compared with NPB patients. Patients under CaMg showed a significant reduction of PP (p < 0.001), LVMI (p = 0.01) and aortic valve calcifications (p = 0.02) compared to sevelamer patients. In a multivariable analysis, CaMg therapy was negatively associated with progression of LVMI (p = 0.02) and aortic valve calcifications (p = 0.01). Patients under CaMg showed higher serum Mg levels (0.93 ± 0.14 mmol/l) compared to patients under sevelamer (0.87 ± 0.13) or NPB patients (0.82 ± 0.12; p < 0.001).

CONCLUSIONS: In prevalent HD patients, the use of CaMg over 48 months was associated with a reduction of PP and LVMI and with a stabilization of aortic valve calcifications. These protective and promising results of this new phosphate binder need to be confirmed in randomized controlled studies.

Journal Article

Abstract  BACKGROUND: Ocimum L. of family Lamiaceae is a well known genus for its ethnobotanical, medicinal and aromatic properties, which are attributed to innumerable phenylpropanoid and terpenoid compounds produced by the plant. To enrich genomic resources for understanding various pathways, de novo transcriptome sequencing of two important species, O. sanctum and O. basilicum, was carried out by Illumina paired-end sequencing.

RESULTS: The sequence assembly resulted in 69117 and 130043 transcripts with an average length of 1646 ± 1210.1 bp and 1363 ± 1139.3 bp for O. sanctum and O. basilicum, respectively. Out of the total transcripts, 59648 (86.30%) and 105470 (81.10%) from O. sanctum and O. basilicum, and respectively were annotated by uniprot blastx against Arabidopsis, rice and lamiaceae. KEGG analysis identified 501 and 952 transcripts from O. sanctum and O. basilicum, respectively, related to secondary metabolism with higher percentage of transcripts for biosynthesis of terpenoids in O. sanctum and phenylpropanoids in O. basilicum. Higher digital gene expression in O. basilicum was validated through qPCR and correlated to higher essential oil content and chromosome number (O. sanctum, 2n = 16; and O. basilicum, 2n = 48). Several CYP450 (26) and TF (40) families were identified having probable roles in primary and secondary metabolism. Also SSR and SNP markers were identified in the transcriptomes of both species with many SSRs linked to phenylpropanoid and terpenoid pathway genes.

CONCLUSION: This is the first report of a comparative transcriptome analysis of Ocimum species and can be utilized to characterize genes related to secondary metabolism, their regulation, and breeding special chemotypes with unique essential oil composition in Ocimum.

Journal Article

Abstract  OBJECTIVE: To characterize parasomnia behaviors on arousal from NREM sleep in Parkinson's Disease (PD) and Multiple System Atrophy (MSA).

METHODS: From 30 patients with PD, Dementia with Lewy Bodies/Dementia associated with PD, or MSA undergoing nocturnal video-polysomnography for presumed dream enactment behavior, we were able to select 2 PD and 2 MSA patients featuring NREM Parasomnia Behviors (NPBs). We identified episodes during which the subjects seemed to enact dreams or presumed dream-like mentation (NPB arousals) versus episodes with physiological movements (no-NPB arousals). A time-frequency analysis (Morlet Wavelet Transform) of the scalp EEG signals around each NPB and no- NPB arousal onset was performed, and the amplitudes of the spectral frequencies were compared between NPB and no-NPB arousals.

RESULTS: 19 NPBs were identified, 12 of which consisting of 'elementary' NPBs while 7 resembling confusional arousals. With quantitative EEG analysis, we found an amplitude reduction in the 5-6 Hz band 40 seconds before NPBs arousal as compared to no-NPB arousals at F4 and C4 derivations (p<0.01).

CONCLUSIONS: Many PD and MSA patients feature various NREM sleep-related behaviors, with clinical and electrophysiological differences and similarities with arousal parasomnias in the general population.

SIGNIFICANCE: This study help bring to attention an overlooked phenomenon in neurodegenerative diseases.

Journal Article

Abstract  Niemann-Pick C disease (NPCD) is a rare autosomal recessive neurovisceral disorder with a heterogeneous clinical presentation. Cholestan-3β,5α,6β-triol and 7-ketocholesterol have been proposed as biomarkers for the screening of NPCD. In this work, we assessed oxysterols levels in a cohort of Italian patients affected by NPCD and analyzed the obtained results in the context of the clinical, biochemical and molecular data. In addition, a group of patients affected by Niemann-Pick B disease (NPBD) were also analyzed. NPC patients presented levels of both oxysterols way above the cut off value, except for 5 siblings presenting the variant biochemical phenotype who displayed levels of 3β,5α,6β-triol below or just above the cut-off value; 2 of them presented also normal levels of 7-KC. Both oxysterols were extremely high in a patient presenting the neonatal systemic lethal phenotype. All NPB patients showed increased oxysterols levels. In conclusion, the reported LC-MS/MS assay provides a robust non-invasive screening tool for NPCD. However, false negative results can be obtained in patients expressing the variant biochemical phenotype. These data strengthen the concept that the results should always be interpreted in the context of the patients' clinical picture and filipin staining and/or genetic studies might still be undertaken in patients with normal levels of oxysterols if symptoms are highly suggestive of NPCD. Both oxysterols are significantly elevated in NPB patients; thus a differential diagnosis should always be performed in patients presenting isolated hepatosplenomegaly, a common clinical sign of both NPCD and NPBD.

Journal Article

Abstract  Neuropeptide B/W receptor-1 (NPBWR1) and NPBWR2 had been known as orphan receptors GPR7 and 8, respectively. Endogenous peptide ligands of these receptors, neuropeptide B (NPB) and neuropeptide W (NPW), were identified in 2002 and 2003 (Fujii et al., 2002; Brezillon et al., 2003; Tanaka et al., 2003). These peptides have been implicated in regulation of feeding behavior, energy homeostasis, neuroendocrine function, and modulating inflammatory pain. In addition, strong and discrete expression of their receptors in the extended amygdala and bed nucleus of the stria terminalis suggests a potential role in regulating stress responses, emotion, anxiety, and fear. Recent studies of NPB/NPW using both pharmacological and phenotypic analyses of genetically engineered mice as well as a human study support this hypothesis.

Journal Article

Abstract  BACKGROUND: Hypertension management strategies have traditionally focused on "tailored therapy" and "stepped-care" approaches. These tend to be costly and time consuming and often fail to achieve adequate blood pressure (BP) control. The TRIUMPH study aims to investigate the effectiveness, cost-effectiveness, and acceptability of early use of a 3-in-1 BP-lowering pill ("Triple Pill") compared with usual care for the management of hypertension.

METHODS: The prospective, open, randomized controlled clinical trial (n = 700) will compare Triple Pill-based strategy to usual care among individuals with persistent mild-to-moderate hypertension (systolic BP >140 mm Hg and/or diastolic BP >90 mm Hg, or systolic BP >130 mm Hg and/or diastolic BP >80 mm Hg in patients with diabetes or chronic kidney disease) on no or minimal drug therapy. The study will be conducted within approximately 20 hospital-based clinics in India. Participants will be randomized to the Triple Pill (initially strength 1-telmisartan 20 mg, amlodipine 2.5 mg, hydrochlorothiazide 6.25 mg, with the option of subsequent titration to strength 2-telmisartan 40 mg, amlodipine 5 mg, hydrochlorothiazide 12.5 mg) or continued usual care. Participants will be followed up for 6 months. The primary outcome is the proportion of participants achieving target BP at the end follow-up.

CONCLUSION: This study will determine whether early use of a low-dose triple combination therapy has the potential to address some of the challenges in hypertension control through earlier achievement of BP control, better adherence, and fewer adverse effects, in the context of less intensive clinical follow-up.

Journal Article

Abstract  PURPOSE: In male patients, the pudendal block was applied only in rare cases as a therapy of neuralgia of the pudendal nerve. We compared pudendal nerve block (NPB) and combined spinal-epidural anesthesia (CSE) in order to perform a pain-free high-dose-rate (HDR) brachytherapy in a former pilot study in 2010. Regarding this background, in the present study, we only performed the bilateral perineal infiltration of the pudendal nerve.

METHODS: In 25 patients (71.8 ± 4.18 years) suffering from a high-risk prostate carcinoma, we performed the HDR-brachytherapy with the NPB. The perioperative compatibility, the subjective feeling (German school marks principle 1-6), subjective pain (VAS 1-10) and the early postoperative course (mobility, complications) were examined.

RESULTS: All patients preferred the NPB. There was no change of anesthesia form necessary. The expense time of NPB was 10.68 ± 2.34 min. The hollow needles (mean 24, range 13-27) for the HDR-brachytherapy remained on average 79.92 ± 12.41 min. During and postoperative, pain feeling was between 1.4 ± 1.08 and 1.08 ± 1.00. A transurethral 22 French Foley catheter was left in place for 6 h. All patients felt the bladder catheter as annoying, but they considered postoperative mobility as more important as complete lack of pain. The subjective feeling was described as 2.28 ± 0.74. Any side effects or complications did not appear.

CONCLUSIONS: Bilateral NPB is a safe and effective analgesic option in HDR-brachytherapy and can replace CSE. It offers the advantage of almost no impaired mobility of the patient and can be performed by the urologist himself. Using transrectal ultrasound guidance, the method can be learned quickly.

Journal Article

Abstract  Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.

Journal Article

Abstract  A novel solution-processable, efficient hole-transporting material 2,4,7-tri[2-(9-hexylcarbazole)ethenyl]-9,9-dihexylfluorene (FC), composed of a fluorenyl core and triple-carbazolyl terminals, is successfully synthesized and well characterized. The FC is a thermally stable, amorphous material because of its aromatic and asymmetric structure. The highest occupied molecular orbital (HOMO) level of FC is -5.21 eV, as determined by cyclic voltammetry, implying its applicability as a hole-transporting layer (HTL) to promote hole injection. Furthermore, the FC could be deposited by a spin-coating process to obtain a homogeneous HTL film, more convenient and cost-effective than conventional NPB which must be deposited by vacuum vapor deposition. When fabricated as multi-layer OLED [ITO/PEDOT:PSS/HTL(25 nm)/Alq3(50 nm)/LiF(0.5 nm)/Al(100 nm)], the maximum brightness (21,400 cd m(-2)) and current efficiency (3.20 cd A(-1)) based on the FC are superior to those using conventional NPB as the hole-transporting layer. In addition, a homogeneous FC film is readily prepared by simple wet processes (spin-coating). Our results indicate that the FC is a promising optoelectronic material which is readily processed by wet methods such as spin-coating.

Journal Article

Abstract  N,N'-Diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) was demonstrated to be suitable for stimulated emission in doping and nondoping planar waveguide structure, but the mechanism for its lasing is of ambiguity. With the aim of providing a microsscopic picture for its lasing, we performed a combined experimental and theortical investigation of the absorption, photoluminescence (PL), and stimulated emission of TPD and other two similar molecules: 1,4-bis (diphenylamino)biphenyl (DPABP) and N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4″-diamine (NPB). It was found that DPABP shows the same amplified spontaneous emission (ASE) characteristics as TPD, but NPB did not. In theory, density functional theory (DFT) and Franck-Condon Principle were used to analyze the molecular geometry in the electronic ground state as well as the optically excited state and the vibrational levels in electronic ground state, respectively. The calculation results show that for TPD and DPABP, several strongly elongated high-frequency modes (1199-1664 cm(-1)) in the carbon rings contribute to the distinct first vibronic sideband in the PL spectra, which form an effective four-level system for lasing. For NPB, when the peripheral toluene or benzene is replaced with naphthyl, a number of strongly elongated low-frequency modes (11-689 cm(-1)) deriving from naphthyl leads to a series of energy sublevels, which destroys the four-level system. Our results provided a new insight and better understanding into the lasing of organic molecules.

Journal Article

Abstract  CXCL10, the chemokine with potent chemotactic activity on immune cells and other non-immune cells expressing its receptor CXCR3, has been demonstrated to involve in myocardial infarction, which was resulted from hypoxia/ischemia. The cardiac microvascular endothelial cells (CMECs) are the first cell type which is implicated by hypoxia/ischemia. However, the potential molecular mechanism by which hypoxia/ischemia regulates the expression of CXCL10 in CMECs remains unclear. In the present study, the expression of CXCL10 was firstly examined by real-time PCR and ELISA analysis. Several potential binding sites (BS) for transcription factors including NF-kappaB (NFkB), HIF1 alpha (HIF1α) and FoxO3a were identified in the promoter region of CXCL10 gene from -2000 bp to -1 bp using bioinformatics software. Luciferase reporter gene vectors for CXCL10 promoter and for activation of above transcription factors were constructed. The activation of NFkB, hypoxia-inducible transcription factor-1 alpha (HIF-1α) and FoxO3a was also analyzed by Western blotting. It was shown that the production of CXCL10 in CMECs was significantly increased by hypoxia/ischemia treatment, in parallel with the activation of CXCL10 promoter examined by reporter gene vector system. Furthermore, transcription factors including NFkB, HIF1α and FoxO3a were activated by hypoxia/ischemia in CMECs. However, over-expression of NFkB, but not that of HIF1α or FoxO3a, significantly promoted the activation of CXCL10 promoter reporter gene. These findings indicated that CXCL10 production in CMECs was significantly increased by hypoxia/ischemia, at least in part, through activation of NFkB pathway and subsequently binding to CXCL10 promoter, finally promoted the transcription of CXCL10 gene.

Journal Article

Abstract  This study evaluated the cyto- and genotoxic effects of three pesticides: α-cypermethrin, chlorpyrifos and imidacloprid applied in vitro to human lymphocytes and HepG2 cells for exposure times of 4 and 24 h at concentrations corresponding to OEL, ADI and REL. Assessments were made using oxidative stress biomarkers and the alkaline comet, cytokinesis-block micronucleus cytome and cell viability assays. Low doses of all three pesticides displayed DNA damaging potential, both in lymphocytes and HepG2 cells. At the tested concentrations, all three compounds induced lymphocyte apoptosis, though α-cypermethrin and chlorpyrifos were generally more cyto- and genotoxic than imidacloprid. At the tested concentrations, oxidative stress biomarkers were not significantly altered, and the effects mediated indirectly through free radicals may not have a key role in the formation of DNA damage. It is likely that the DNA damaging effects were caused by direct interactions between the tested compounds and/or their metabolites that destabilized the DNA structure. The tested pesticides had the potential for MN, NB and NPB formation and to disturb cell cycle kinetics in both cell types. There were also indications that exposure to α-cypermethrin led to the formation of crosslinks in DNA, though this would require more detailed study in the future.

Journal Article

Abstract  1-Bromopropane (1-BP) has been used as an alternative for fluoride compounds and 1-BP intoxication may involve lung, liver, and central neural system (CNS). Our previous studies showed that 1-BP impaired memory ability by compromising antioxidant cellular defenses. Melatonin is a powerful endogenousantioxidant, and the objective of this study was to explore the therapeutic role of melatonin in the treatment of 1-BP intoxication. Rats were intragastrically treated with 1-BP with or without melatonin, and then sacrificed on 27th day after 1-BP administration. The Morris water maze (MWM) test was used to evaluate the spatial learning and memory ability of the experimental animals, and NeuN staining was performed to assess neuron loss in hippocampus. We found that rats treated with 1-BP spent more time and swam longer distance before landing on the hidden platform with a comparable swimming speed, which was markedly mitigated by the pretreatment with melatonin in a concentration-dependent manner. In addition, 1-BP-induced notable decrease in neuron population in hippocampus by promoting apoptosis, and melatonin pretreatment attenuated those changes in brain. The GSH/GSSG ratio was proportionately decreased and heme oxygenase 1 was increased in the rats exposed to 1-BP (Figure 6), and administration of melatonin restored them. Meanwhile, MDA, the level of lipid peroxidation product, was significantly increased upon exposed to 1-BP, which was significantly attenuated by melatonin pretreatment, indicating that administration of 1-BP could interfere with redox homeostasis of brain in rat, and such 1-BP-induced biomedical changes were reversed by treatment with melatonin.We conclude that treatment with melatonin attenuates 1-BP-induced CNS toxicity through its ROS scavenging effect.

Journal Article

Abstract  BACKGROUND: Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal dominant disease. Mutations in the forkhead box L2 (FOXL2) gene cause two types of BPES distinguished by the presence (type I) and absence (type II) of premature ovarian failure (POF). The purpose of this study was to identify possible mutations in FOXL2 in two Chinese families with BPES.

METHODS: Two large autosomal dominant Chinese BPES families were enrolled in this study. Genomic DNA was obtained from the leukocytes in peripheral venous blood. Four overlapping sets of primers were used to amplify the entire coding region and nearby intron sequences of the FOXL2 gene for mutations detection using polymerase chain reaction (PCR) and sequencing analyses. The sequencing results were analyzed using DNAstar software.

RESULTS: All patients of the two families demonstrated typical features of BPES type II, including small palpebral fissures, ptosis, telecanthus, and epicanthus inversus without female infertility (POF). A novel FOXL2 heterozygous indel mutation c.675_690delinsT, including a 16-bp deletion and a 1-bp(T) insertion (p.Ala226_Ala230del), which would result in deletion of 5 alanine residues of a poly-alanine (poly-Ala) tract in the protein, was identified in all affected members of family A. A novel heterozygous missense mutation (c.223C > T, p.Leu75Phe) was identified in family B.

CONCLUSIONS: Two novel FOXL2 mutations were identified in Chinese families with BPES. Our results expand the spectrum of FOXL2 mutations and provide additional structure-function insights into the FOXL2 protein.

Journal Article

Abstract  Sigma (σ) factors are bacterial transcription initiation factors that direct transcription at cognate promoters. The promoters recognized by primary σ are composed of -10 and -35 consensus elements separated by a spacer of 17±1 bp for optimal activity. However, how the optimal promoter spacing is sensed by the primary σ remains unclear. In the present study, we examined this issue using a transcriptionally active Bacillus subtilis N-terminally truncated σA (SND100-σA). The results of the present study demonstrate that SND100-σA binds specifically to both the -10 and -35 elements of the trnS spacing variants, of which the spacer lengths range from 14 to 21 bp, indicating that simultaneous and specific recognition of promoter -10 and -35 elements is insufficient for primary σ to discern the optimal promoter spacing. Moreover, shortening in length of the flexible linker between the two promoter DNA-binding domains of σA also does not enable SND100-σA to sense the optimal promoter spacing. Efficient recognition of optimal promoter spacing by SND100-σA requires core RNAP (RNA polymerase) which reduces the flexibility of simultaneous and specific binding of SND100-σA to both promoter -10 and -35 elements. Thus the discrimination of optimal promoter spacing by σ is core-dependent.

Journal Article

Abstract  OBJECTIVES: Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time.

METHODS: Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days.

RESULTS: Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci.

CONCLUSIONS: Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries.

  • <<
  • 3 of 26
  • >>
Filter Results