OPPT_1,4-Dioxane_C. Engineering

Project ID

2542

Category

OPPT REs

Added on

March 7, 2017, 3:15 p.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  As a result of recent interest in the carcinogenic effect of dioxane, a mortality study was conducted on employees exposed to this compound at a major chemical company plant. Standard follow-up techniques were used to ascertain the vital status of a total of 165 employees ever exposed to dioxane since 1954. Observed deaths from overall cancer were not significantly different from the expected number of deaths. The observations were based on small numbers of deaths of employees who were apparently exposed at low levels and for relatively short exposures.

Technical Report

Abstract  This guide is intended as a source of general industrial hygiene information for workers, employers, and occupational health professionals. It presents key information and data in abbreviated tabular form for 677 chemicals or substance groupings (e.g., manganese compounds, tellurium compounds, inorganic tin compounds, etc.) that are found in the work environment. The industrial hygiene information found in the Guide should help users recognize and control occupational chemical hazards. The chemicals or substances contained in this revision include all substances for which the National Institute for Occupational Safety and Health (NIOSH) has recommended exposure limits (RELs) and those with permissible exposure limits (PELs) as found in the Occupational Safety and Health Administration (OSHA) General Industry Air Contaminants Standard (29 CFR 1910.1000). This revision includes updated sampling and analytical methods, updated Department of Transportation (DOT) identification and guide numbers, current exposure limits, revised respirator selections, and revised IDLH (immediately dangerous to life or health concentration) values.

Technical Report

Abstract  The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described here. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The complete list of topics covered (chapter titles) is shown at the left and in more detail further down this page. The focus of the profile is on health and toxicologic information. Therefore, each profile begins with a Public Health Statement that summarizes in nontechnical language, a substance's relevant properties. A useful two page information sheet, the ToxFAQs, is also available.

Archival Material

Abstract  This document provides a preliminary public summary of available information collected by EPA’s Office of Pollution Prevention and Toxics (OPPT) in the Office of Chemical Safety and Pollution Prevention (OCSPP) on the manufacturing (including importing), processing, distribution in commerce, use, and disposal of this chemical. This is based on existing data available to EPA, including information collected under the Chemical Data Reporting rule, Toxics Release Inventory (if available), information from other Agency databases, other U.S. Government agencies, publicly available information from states, and a review of published literature. In addition, the document includes information reported to EPA by producers and users of the chemical in the United States and in other countries. This preliminary use information and any additional use information received in the docket by March 15, 2017 will inform efforts to develop the scope of the chemical risk evaluation required under section 6(b)(4) of the Toxic Substances Control Act, and will inform any risk management efforts following risk evaluation. Mention of trade names in this document does not constitute endorsement by EPA. To verify products or articles containing this chemical currently in commerce, EPA has identified several examples. Any lists are provided for informational purposes only. EPA and its employees do not endorse any of the products or companies. This document does not contain confidential business information (CBI).

Journal Article

Abstract  As a groundwater contaminant, 1,4-dioxane is of considerable concern because of its toxicity, refractory nature to degradation, and rapid migration within an aquifer. Although landfill leachate has been reported to contain significant levels of 1,4-dioxane, the origin of 1,4-dioxane in leachate has not been clarified until now. In this study, the origins of 1,4-dioxane in landfill leachate were investigated at 38 landfill sites and three incineration plants in Japan. Extremely high levels of 1,4-dioxane 89 and 340 microg l(-1), were detected in leachate from two of the landfill sites sampled. Assessments of leachate and measurement of 1,4-dioxane in incineration residues revealed the most likely source of 1,4-dioxane in the leachate to be the fly ash produced by municipal solid waste incinerators. Effective removal of 1,4-dioxane in leachate from fly ash was achieved using heating dechlorination systems. Rapid leaching of 1,4-dioxane observed from fly ash in a sequential batch extraction indicated that the incorporation of a waste washing process could also be effective for the removal of 1,4-dioxane in fly ash.

Filter Results