Nitrate/Nitrite

Project ID

2367

Category

IRIS

Added on

May 22, 2015, 8 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  The performance of rhodium supported on ceria-zirconia solid solution for selective catalytic reduction of NOx by unburned hydrocarbons in the presence of O-2 was investigated. Three hydrocarbons (propane, propylene and toluene) were selected as model compounds of aliphatic and aromatic hydrocarbons existing in the coal combustion exhaust gas. The Rh/Ce0.62Zr0.38O2 catalyst was found to be active in coal deNO(x) reaction (57% at 555 K for hydrocarbons mixture). X-ray diffraction, H-2 temperature-programmed reduction, temperature-programmed desorption of NO, temperature-programmed surface reaction were used to determine and to explain the performance of our catalyst in deNO(x) process. In order to better understand the mechanism of this process, the nature of the species formed on the catalytic surface during catalytic reduction of NO by hydrocarbons was studied by infrared spectroscopy. It was found that the nitrates species reacts with the adsorbed hydrocarbons, during the deNO(x) process forming some carboxylates and some nitrites. The three functions are confirmed in deNOx process: (i) oxidation of NO to NO2 on Rh2O3 particles, (ii) mild oxidation of HC in the presence of NO2 to carboxylates on Rh2O3 and (iii) decomposition- reduction of NO to N-2 with total oxidation of the oxygenated species on the Rh3+ species. (C) 2015 Elsevier Ltd. All rights reserved.

DOI
Journal Article

Abstract  Nitrous oxide (N2O) fluxes can increase significantly following small increases in soil water-filled pore space (WFPS). Thus, it is essential to improve our knowledge of this crucial relationship to better model N2O emissions by soils. We studied how much the addition of a gas transport and a gas-liquid equilibrium module to the model of N2O emissions NOE could improve simulation results. A sensitivity analysis of the modified model (NOEGTE: gas transport and equilibrium) was first performed, and then the model was tested with published data of a wetting-drying experiment. Simulated N2O fluxes plotted against WFPS appeared to be bell-shaped during the 7 days simulated, combining the effects of the low N2O production for WFPS < 0.62, and the slow gas diffusion for WFPS > 0.95. The WFPS generating the maximum simulated N2O fluxes shifted with time, from 0.76 after 12 h, to 0.79 after 168 h, because of an increase over time of the gas concentration gradient between the soil surface and the atmosphere. NOEGTE appeared able to capture the pattern of N2O emissions monitored in the experimental data. In particular, N2O peaks during drying were well reproduced in terms of timing, but their magnitudes were often overestimated. They were attributed to the increasing gas diffusivity and N2O exchanges from the liquid phase to the gaseous phase.

Journal Article

Abstract  Introduction: Patients with end-stage renal disease (ESRD) exhibit features of a hypercoagulable state, which may contribute to cardiovascular complications. Data from "in vitro" studies suggest that cell-free plasma lipids and lipoproteins may be capable to support thrombin generation. The aim of this study has been to establish the role of plasma oxidized LDL (oxLDL) in the coagulation activation in hemodialyzed (HD) patients with and without cardiovascular disease (CVD).

Materials and Methods: We examined relationship between a marker of coagulation activation - prothrombin fragments 1 + 2 (F1 + 2), and plasma oxLDL levels in 60 HD patients with and without CVD and in 20 healthy controls.

Results: F1 + 2 levels were significantly higher in HD patients than in controls, and they were higher in HD patients with CVD compared to those without CVD (p < 0.001). Conversely, oxLDL levels were similar in HD patients with CVD and healthy controls, whereas this parameter was lower in HD patients without CVD when compared to controls and patients with CVD (both p < 0.01). Close positive and independent association was between F1 + 2 and oxLDL levels in HD patients. Nitrates treatment and the presence of pyelonephritis were associated with reduced oxLDL as well as hypercoagulability in HD patients with cardiovascular complications.

Conclusion: This study demonstrates the independent association between oxLDL and the marker of coagulation activation - F1 + 2 in HD patients. This new observation may offer a better understanding of the complex mechanism leading to hypercoagulability, which is markedly intensified in these patients, particularly in those with CVD. (C) 2014 Elsevier Ltd. All rights reserved.

DOI
Journal Article

Abstract  Surface water quality in the Lower Mississippi River Basin (LMRB) and the adjacent Gulf of Mexico has degraded over the past several decades primarily due to deforestation to agricultural lands and the loss of wetlands. This study investigated the benefits of reforestation upon nitrate-nitrogen (NO3-- - -NN) and orthophosphate (PO43-) load reductions in the Lower Yazoo River Watershed (LYRW) within the LMRB using the BASINS-HSPF model. The model was calibrated and validated with available experimental data prior to its applications. Two simulation scenarios were then performed: one was chosen to predict the NO3-- - -N and PO43- loads without reforestation and the other was selected to estimate the impacts of reforestation upon NO3-- - -N and PO43- load reductions following the conversion of 25, 50, 75, and 100% of the agricultural lands (with most lands near or in the batture of the streams) into forests. In general, an increase in forests reduced NO3-- - -N and PO43- loads and occurred because forest soils enriched in organic matter absorb water and nutrients and reduce the surface water runoff. Overall, a two-fold increase in forest land would result in approximately two-fold decrease in annual average NO3-- - -N and PO43- loads. On average, over a 10-year simulation, the specific NO3-- - -N and PO43- load reductions were, respectively, 0.06 and 0.004 ton/ha/y. Although the annual average NO3-- - -N and PO43- loads always decreased with increasing forest land conversion, the optimal specific NO3-- - -N and PO43- load reductions were found at a 75% reduction of agricultural land for the simulation conditions used in this study. Additionally, the annual average NO3-- - -N load was about 16 times higher than that of PO43- in the LYRW. This study suggests that reforestation in or around the batture of streams is a beneficial practice for NO3-- - -N and PO43- load reductions. Published by Elsevier B.V.

DOI
Journal Article

Abstract  A sensitive flow-injection method for the chemiluminescent determination of ultra-low concentration of nitrate in water is presented. Nitrate is on-line photolytically converted to peroxynitrite by absorption of UV light inside of 60 mm long quartz capillary (i.d. 530 mu m, o.d. 720 m). Peroxynitrite is subsequently determined by the chemiluminescent reaction with luminol. The detection limit of nitrate is 7 x 10(-10) M (S/N = 3). The linear range of the method is 2 x 10(-9)-1 x 10(-5) M nitrate. The interference of nitrite is eliminated by its conversion to nitrogen after mixing of sample with a solution of sulfamidic acid. Other common anions do not interfere. The interference of cations is eliminated by passing the sample through a cation-exchange column. The FIA procedure allows analysing of 15 samples per hour. The method was applied to the determination of nitrate in various real water samples. The results are in good agreement with a reference ion chromatographic method.

DOI
Journal Article

Abstract  nitrogen (N) budget for Denmark has been developed for the years 1990 to 2010, describing the inputs and outputs at the national scale and the internal flows between relevant sectors of the economy. Satisfactorily closing the N budgets for some sectors of the economy was not possible, due to missing or contradictory information. The budgets were nevertheless considered sufficiently reliable to quantify the major flows. Agriculture was responsible for the majority of inputs, though fisheries and energy generation also made significant contributions. Agriculture was the main source of N input to the aquatic environment, whereas agriculture, energy generation and transport all contributed to emissions of reactive N gases to the atmosphere. Significant reductions in inputs of reactive N have been achieved during the 20 years, mainly by restricting the use of N for crop production and improving livestock feeding. This reduction has helped reduce nitrate leaching by about half. Measures to limit ammonia emissions from agriculture and mono-nitrogen oxides (NOx) emissions from energy generation and transport, has reduced gaseous emissions of reactive N. Much N flows through the food and feed processing industries and there is a cascade of N through the consumer to solid and liquid waste management systems. The budget was used to frame a discussion of the potential for further reductions in losses of reactive N to the environment. These will include increasing the recycling of N between economic sectors, increasing the need for the assessment of knock-on effects of interventions within the context of the national N cycle.

DOI
Journal Article

Abstract  Water and particulate organic matter samples were analyzed for dissolved nutrients and stable carbon and nitrogen isotope ratio, respectively, in the Ishikari River system, from August 2009 to July 2010. Dissolved nutrient concentration showed significant spatial and seasonal variations within the river system. Mean concentration and standard deviation of ammonium, nitrite, nitrate, phosphate, silica, and dissolved organic carbon were 0.17 +/- 0.17, 0.01 +/- 0.01, 0.93 +/- 0.59, 0.03 +/- 0.01, 9.07 +/- 2.40, and 3.7 +/- 0.93 (mg l(-1)), respectively. The delta C-13, delta N-15, and molar C/N ratio of particulate organic matter samples ranged from -34.6 to -24.6 parts per thousand, -4.8 to 15.8 parts per thousand, and 5.3 to 17.8, respectively, in the Ishikari River system. Nutrient concentration showed increasing trend during the past 50 years owing to increased urban growth and development taking place in the river basin. The molar ratio of dissolved inorganic nitrogen (DIN)/dissolved inorganic phosphate (DIP) was higher than the Redfield ratio (16:1), which implies phosphorus limitation of phyto-plankton growth in the river water. The negative value of the indicator of coastal eutrophication potential for nitrogen for the Ishikari River system indicated the absence of eutrophication problem in its coastal areas. Annual nutrient fluxes from Ishikari River for dissolved inorganic nitrogen (DIN-N), phosphate (PO4-P), dissolved silica (SiO2-Si), and dissolved organic carbon (DOC-C) were 1.6x10(4), 379, 13.2x10(4), and 5.4x10(4) t year(-1), respectively.

Journal Article

Abstract  Silver nanoparticles (AgNPs) are commercially used mainly as antibacterial reagents in wound dressing and deodorant powders. However, the mechanisms underlying Ag toxicity in mammals are not fully understood. In the present study, we assessed cellular distribution and toxicity of AgNPs and AgNO3 in mouse macrophage cell line (J774.1) and those of AgNO3 in human bronchial epithelial cell line (BEAS-2B) focusing on behavior of metallothionein (MT). J774.1 cells were exposed to 0-100 mu g Ag/mL AgNPs or AgNO3 and BEAS-2B cells were exposed to 0-100 mu m AgNO3 for 24 h. The cytotoxicity was assayed by a modified MTT method. The cellular concentration and distribution of Ag were evaluated by inductively coupled plasma-mass spectorometry (ICP-MS) and laser scanning microscopy. Distribution of Ag to MT and other proteins was determined using HPLC-ICP-MS. Most AgNPs were found in lysosomes in J774.1 at 3 h after post exposure. Ag was distributed to high molecular weight proteins in AgNPs-exposed cells, while most Ag was bound to MT in AgNO3-exposed cells. In AgNO3-exposed BEAS-2B cells cellular Ag concentration and Ag-bound MT (Ag-MT) were sharply increased up to 3 h and then decreased. ROS production appeared to cause relocation of MT-bound Ag to mitochondria, which evoked inhibition of electron transport chain. AgNPs were sequestered by high-molecular weight proteins rather than MT, probably because they were taken up by lysosomes before induction of MT.

DOI
Journal Article

Abstract  Pure nanocrystalline La2O3 powders were successfully prepared by the combustion method. The effect of ethanolamine-to-nitrate ratio on phase composition and crystallite size of the combustion products was systematically investigated. Pure hexagonal La2O3 powders were almost formed in stoichiometric reaction (psi=1.15), while metallic La phase was obtained in fuel-rich conditions (psi >= 3.0). The as-synthesized hexagonal La2O3 was found to be chemically unstable in ambient air since a complete transformation to hexagonal La(OH)(3) was detected after 24 h exposure to air. The resulting hexagonal La(OH)(3) showed an excellent ability to remove water pollutant and could nearly remove 100% of the Congo red at room temperature with a removal capacity of 143.5 mg Congo red/g. The phosphate adsorption data on hexagonal La(OH)(3) agreed well with the Langmuir model with the estimated maximum adsorption capacity of 57.8 mg/g.

DOI
Journal Article

Abstract  The biodegradation of styrene in waterlogged soils and aquifer solids was initially rapid, but the rate then declined. Significant amounts of styrene persisted under waterlogged conditions. Trace amounts of phenylethanol, phenylacetic acid, phenylacetaldehyde, and benzoic acid appeared in soils but not in aquifer solids. Styrene oxide was not detected. Addition of nitrate did not stimulate styrene degradation in aquifer solids and Lima loam. Because many waste sites are anoxic, the persistence of styrene under waterlogged conditions may be of environmental importance.

Journal Article

Abstract  In previous studies, (R)-2-isobutyl 3-methyl 3,4-dihydro-1H-pyrido[3,4-b]indole-2,3(9H)-dicarboxylate (1), a callophycin A derivative, was found to strongly inhibit nitrite production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, while (R)- or (S)-callophycin A showed only weak inhibition. We currently report additional studies to define the mechanisms underlying the inhibitory action of 1. Expression of inducible nitric oxide synthase (iNOS) was reduced at both protein and mRNA levels. Major upstream signaling molecules and transcription factors regulating iNOS expression were examined, but it was found that 1 did not affect the phosphorylated and total protein levels of p38 mitogen-activated protein kinase (p38 MAPK), Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and signal transducer and activator of transcription 1 (STAT1), nor did it mediate the degradation of the inhibitor of nuclear factor-κB α-isoform (IκBα). However, starting at early time points, 1 consistently inhibited the phosphorylation of protein kinase B/Akt at serine 473. In addition, 1 suppressed the protein expression of octamer-binding transcription factor-2 (Oct-2) and the expression of microRNA 155 (miR-155). In sum, compound 1 inhibits LPS-induced nitrite production by a unique and complex mechanism. Reduction of iNOS expression is accompanied by inhibition of Akt activation, Oct-2 protein expression, and miR-155 expression.

Journal Article

Abstract  Copper-containing nitrite reductase (CuNIR) catalyzes the reduction of nitrite (NO(-)2) to nitric oxide (NO) during denitrification. We determined the crystal structures of CuNIR from thermophilic gram-positive bacterium, Geobacillus thermodenitrificans (GtNIR) in chloride- and formate-bound forms of wild type at 1.15 Å resolution and the nitrite-bound form of the C135A mutant at 1.90 Å resolution. The structure of C135A with nitrite displays a unique η(1)-O coordination mode of nitrite at the catalytic copper site (T2Cu), which has never been observed at the T2Cu site in known wild-type CuNIRs, because the mobility of two residues essential to catalytic activity, Asp98 and His244, are sterically restricted in GtNIR by Phe109 on a characteristic loop structure that is found above Asp98 and by an unusually short CH-O hydrogen bond observed between His244 and water, respectively. A detailed comparison of the WT structure with the nitrite-bound C135A structure implies the replacement of hydrogen-bond networks around His244 and predicts the flow path of protons consumed by nitrite reduction. On the basis of these observations, the reaction mechanism of GtNIR through the η(1)-O coordination manner is proposed.

Journal Article

Abstract  The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple food for hundreds of millions of people and where groundwater resources are polluted with nitrate and depleted through irrigation. Here, we report on fertilizer N and irrigation water use, grain yields, and nitrous oxide (N2O) and methane (CH4) emissions of conventional and optimized winter wheat-summer maize double-cropping systems, and of three alternative cropping systems, namely a winter wheat-summer maize (or soybean)-spring maize system, with three harvests in two years; and a single spring maize system with one crop per year. The results of this two-year study show that the optimized double-cropping system led to a significant increase in grain yields and a significant decrease in fertilizer N use and net greenhouse gas intensity, but the net greenhouse gas N2O emissions plus CH4 uptake and the use of irrigation water did not decrease relative to the conventional system. Compared to the conventional system the net greenhouse gas emissions, net greenhouse gas intensity and use of fertilizer N and irrigation water decreased in the three alternative cropping systems, but at the cost of grain yields except in the winter wheat-summer maize-spring maize system. Net uptake of CH4 by the soil was little affected by cropping system. Average N2O emission factors were only 0.17% for winter wheat and 0.53% for maize. In conclusion, the winter wheat-summer maize-spring maize system has considerable potential to decrease water and N use and decrease N2O emissions while maintaining high grain yields and sustainable use of groundwater.

Journal Article

Abstract  Airborne fine particulate matter PM2.5 as one of composite core pollutants of air pollution is concerned and NO as one of the main components of water-soluble ions has an important impact on precipitation and human health, so searching a method of rapid and reliable detection is an important work. According to advantages of the Fourier transform infrared spectroscopy technology, the infrared spectrum of NO3- in NH4NO3 was compared with PM2.5 by a sampling method of making film. The result shows that their spectra are consistent with each other. A range of infrared spectra of different masses of NO3- were measured and the absorbance was fitted with mass, correlation and mass range of which are 0.994 8 and 7.82-73.78 microg, respectively. According to the corresponding relationship of mass between solution and sample film, the FTIR of the sample film was measured directly and mass concentrations of NO3- in a month (between 2012-03-20 and 2012-04-20) of Hefei area are listed and the average is 4.1713 microg x m(-3).

Journal Article

Abstract  Pothos scandens L. was used in Indian traditional medicine as an antiasthmatic drug. The ethanolic and aqueous extracts were prepared with aerial parts of P. scandens (PSE & PSA). ESI MS/MS of PSE ethanolic extract was carried out for the determination of chemical constituents. CP1 is isolated from the PSE, structurally confirmed with NMR and LCMS/MS. PSE, PSA and CP1 are evaluated against ovalbumin (OVA) induced airway hyperresponsiveness (AHR) in balb/c mice. The test drugs are administered p.o. prior to challenge with aerosolized 2.5% w/v OVA. Total and differential leucocyte count, nitrite (NO2), nitrate (NO3), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-13 (IL-13) are estimated in bronchoalveolar lavage fluid (BALF). Similarly, myeloperoxidase (MPO), malonaldehyde (MDA) and total lung protein (TLP) are estimated in the lungs. The results reveal a significant increase in total and differential leucocyte count, NO2, NO3, TNF-α, IL-6, and IL-13 in OVA induced AHR. However, these parameters are significantly decreased in PSE and PSA tested doses (PSE 100 & 200mg/kg). While, treatment with CP1 is less effective at 5 & 10mg/kg doses. Similar observations obtain for MPO and MDA in lungs. However, the mean value indicated that the PSE at 200mg/kg showed a significant restoration in all the parameters. Pro-inflammatory mediators are known to be responsible for AHR. Histopathology revealed justifies the effectiveness. The present investigations suggest PSE are interesting molecules for further research for asthma, with an approach through pro-inflammatory inhibitory pathway. P. scandens is a potential herbal medicine for allergy induced asthma.

Journal Article

Abstract  (S)-ZJM-289, a novel nitric oxide (NO)-releasing derivative of 3-n-butylphthalide, induces the neuroprotection in a rat model of focal cerebral ischemia/reperfusion (I/R). However, much is unknown about the late phase effect in the neuroprotection of (S)-ZJM-289 preconditioning. The purpose of this study is to explore the late phase neuroprotection of (S)-ZJM-289 preconditioning, as well as underlying mechanisms involved. Preconditioning with 40-160 mg/kg, (S)-ZJM-289 significantly reduces brain damage after I/R. (S)-ZJM-289 preconditioning is effective when applied 1-3 days before I/R. Moreover, the degrees of neuroprotection offered by (S)-ZJM-289 preconditioning and ischemic preconditioning are virtually identical. (S)-ZJM-289 preconditioning also protects primary cultured cortical neurons against oxygen-glucose deprivation and recovery-induced cytotoxicity in vitro. (S)-ZJM-289 preconditioning significantly increases the generation of NO, but has no effect on the nitric oxide synthase activities. Additionally, (S)-ZJM-289 preconditioning promotes the dissociation between nuclear-factor-E2-related factor (Nrf2) and kelch-like ECH-associated protein 1, and induces Nrf2 nuclear localization. The neuroprotection of (S)-ZJM-289 preconditioning is blocked by Nrf2-siRNA in vitro. (S)-ZJM-289 preconditioning up-regulates antioxidant enzymes against nervous injury. (S)-ZJM-289 preconditioning significantly activates extracellular regulated protein kinases (ERK) and inhibits c-Jun N-terminal kinases signaling cascade. The neuroprotection is abolished by the ERK inhibitor PD98059 in vitro. Subsequently, (S)-ZJM-289 preconditioning increases the levels of anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and inhibited the translocation of Bcl-2 associated X to the mitochondria, thus attenuating the release of cytochrome c from the mitochondria and the activation of downstream caspase. These results suggest that (S)-ZJM-289 preconditioning exerts the late phase protection against nervous injury induced by transient cerebral ischemia and oxygen-glucose deprivation.

Journal Article

Abstract  The dorsal hippocampus (DH) is a structure of the limbic system that is involved in emotional, learning and memory processes. There is evidence indicating that the DH modulates cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint stress (RS) is an unavoidable stress situation that evokes marked and sustained autonomic changes, which are characterized by elevated blood pressure (BP), intense heart rate (HR) increase and a decrease in cutaneous temperature. In the present study, we investigated the involvement of an N-methyl-D-aspartate (NMDA) glutamate receptor/nitric oxide (NO) pathway of the DH in the modulation of autonomic (arterial BP, HR and tail skin temperature) responses evoked by RS in rats. Bilateral microinjection of the NMDA receptor antagonist AP-7 (10 nmol/500 nL) into the DH attenuated RS-evoked autonomic responses. Moreover, RS evoked an increase in the content of NO₂/NO₃ in the DH, which are products of the spontaneous oxidation of NO under physiological conditions that can provide an indirect measurement of NO production. Bilateral microinjection of N-propyl-L-arginine (0.1 nmol/500 nL; N-propyl, a neuronal NO synthase (nNOS) inhibitor) or carboxy-PTIO (2 nmol/500 nL; c-PTIO, an NO scavenger) into the DH also attenuated autonomic responses evoked by RS. Therefore, our findings suggest that a glutamatergic system present in the DH is involved in the autonomic modulation during RS, acting via NMDA receptors and nNOS activation. Furthermore, the present results suggest that NMDA receptor/nNO activation has a facilitatory influence on RS-evoked autonomic responses.

Journal Article

Abstract  This study compared the plasma kallikrein activity (PKA), bradykinin concentration (BK), DesArg(9)-BK production, nitric oxide release (NO) and blood pressure (BP) response after moderate-intensity aerobic exercise performed by individuals with and without type 2 diabetes. Ten subjects with type 2 diabetes (T2D) and 10 without type 2 diabetes (ND) underwent three sessions: 1) maximal incremental test on cycle ergometer to determine lactate threshold (LT); 2) 20-min of constant-load exercise on cycle ergometer, at 90% LT and; 3) control session. BP and oxygen uptake were measured at rest and at 15, 30 and 45 min post-exercise. Venous blood samples were collected at 15 and 45 minutes of the recovery period for further analysis of PKA, BK and DesArg(9)-BK. Nitrite plus nitrate (NOx) was analyzed at 15 minutes post exercise. The ND group presented post-exercise hypotension (PEH) of systolic blood pressure and mean arterial pressure on the 90% LT session but T2D group did not. Plasma NOx increased ~24.4% for ND and ~13.8% for T2D group 15 min after the exercise session. Additionally, only ND individuals showed increases in PKA and BK in response to exercise and only T2D group showed increased DesArg(9)-BK production. It was concluded that T2D individuals presented lower PKA, BK and NOx release as well as higher DesArg(9)-BK production and reduced PEH in relation to ND participants after a single exercise session.

Journal Article

Abstract  Most physiological processes in mammals are synchronized to the daily light:dark cycle by a circadian clock located in the hypothalamic suprachiasmatic nucleus. Signal transduction of light-induced phase advances of the clock is mediated through a neuronal nitric oxide synthase-guanilyl cyclase pathway. We have employed a novel nitric oxide-donor, N-nitrosomelatonin, to enhance the photic synchronization of circadian rhythms in hamsters. The intraperitoneal administration of this drug before a sub-saturating light pulse at circadian time 18 generated a two-fold increase of locomotor rhythm phase-advances, having no effect over saturating light pulses. This potentiation was also obtained even when inhibiting suprachiasmatic nitric oxide synthase activity. However, N-nitrosomelatonin had no effect on light-induced phase delays at circadian time 14. The photic-enhancing effects were correlated with an increased suprachiasmatic immunoreactivity of cFOS and PER1. Moreover, in vivo nitric oxide release by N-nitrosomelatonin was verified by measuring nitrate and nitrite levels in suprachiasmatic nuclei homogenates. The compound also accelerated resynchronization to an abrupt 6-h advance in the light:dark cycle (but not resynchronization to a 6-hour delay). Here we demonstrate the chronobiotic properties of N-nitrosomelatonin, emphasizing the importance of nitric oxide-mediated transduction for circadian phase advances. This article is protected by copyright. All rights reserved.

Journal Article

Abstract  Global agricultural emissions of the greenhouse gas nitrous oxide (N2O) have increased by around 20% over the last 100 y, but regulation of these emissions and their impact on bacterial cellular metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the biochemistry of this process has been studied extensively in Paracoccus denitrificans. Here we demonstrate that expression of the gene encoding the nitrous oxide reductase (NosZ), which converts N2O to N2, is regulated in response to the extracellular copper concentration. We show that elevated levels of N2O released as a consequence of decreased cellular NosZ activity lead to the bacterium switching from vitamin B12-dependent to vitamin B12-independent biosynthetic pathways, through the transcriptional modulation of genes controlled by vitamin B12 riboswitches. This inhibitory effect of N2O can be rescued by addition of exogenous vitamin B12.

Journal Article

Abstract  We demonstrate herein that silibinin, a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), inhibits LPS-induced activation of macrophages and production of nitric oxide (NO) in RAW 264.7 cells. Western blot analysis showed silibinin inhibits iNOS gene expression. RT-PCR showed that silibinin inhibits iNOS, TNF-α, and IL1β. We also showed that silibinin strongly inhibits p38 MAPK phosphorylation, whereas the ERK1/2 and JNK pathways are not inhibited. The p38 MAPK inhibitor abrogated the LPS-induced nitrite production, whereas the MEK-1 inhibitor did not affect the nitrite production. A molecular modeling study proposed a binding pose for silibinin targeting the ATP binding site of p38 MAPK (1OUK). Collectively, this series of experiments indicates that silibinin inhibits macrophage activation by blocking p38 MAPK signaling.

Journal Article

Abstract  Solution behavior of lomefloxacin (lmx) complexes with copper(II) in the presence and absence of 1,10-phenanthroline (phen) was studied in aqueous solution, by potentiometry. The results obtained showed that under physiological conditions (micromolar concentration range and pH7.4) only copper(II):lmx:phen ternary complexes are stable. Hence, a novel copper(II) ternary complex of lomefloxacin with the nitrogen donor heterocyclic ligand phen was synthesized and characterized by means of UV-visible and IR spectroscopy, elemental analysis and X-ray crystallography. In the synthesized complex (1), [Cu(lmx)(phen)(NO3)]·5H2O, lmx acts as a bidentate ligand coordinating the metal cation, in its anionic form, through the carbonyl and carboxyl oxygens and phen coordinates through two N-atoms forming the equatorial plane of a distorted square-pyramidal geometry. The fifth ligand of the penta-coordinated Cu(II) center is occupied axially by an oxygen atom from the nitrate ion. Minimum inhibitory concentration (MIC) determinations of the complex and comparison with free lomefloxacin in various E. coli strains indicated that the Cu-complex is an antimicrobial which is as efficient as the free antibiotic but strongly suggest that the cell intake route of both species is different. Moreover, spectrophotometric stability studies suggest that the solution of the complex synthesized is considerably more photostable than the free fluoroquinolone supporting, therefore, the complex's suitability as a candidate for further biological testing in fluoroquinolone-resistant microorganisms with possible reduced side-effects.

Journal Article

Abstract  In aquatic ecosystems, availabilities of Fe, Mo and Cu potentially limit rates of critical biological processes, including nitrogen fixation, nitrate assimilation and N2O decomposition. During long periods in Earth's history when large parts of the ocean were sulfidic, what prevented these elements' quantitative loss from marine habitats as insoluble sulfide phases? They must have been retained by formation of soluble complexes. Identities of the key ligands are poorly known but probably include thioanions. Here, the first determinations of stability constants for Fe(2+)-[MoS4](2-) complexes in aqueous solution are reported based on measurements of pyrrhotite (hexagonal FeS) solubility under mildly alkaline conditions. Two linear complexes, [FeO(OH)MoS4](3-) and [(Fe2S2)(MoS4)2](4-), best explain the observed solubility variations. Complexes that would be consistent with cuboid cluster structures were less successful, implying that such clusters probably are minor or absent in aqueous solution under the conditions studied. The new data, together with prior data on stabilities of Cu(+)-[MoS4](2-) complexes, are used to explore computationally how competition of Fe(2+) and Cu(+) for [MoS4](2-), as well as competition of [MoS4](2-) and HS(-) for both metals would be resolved in solutions representative of sulfidic natural waters. Thiomolybdate complexes will be most important at sulfide concentrations near the [MoO4](2-)-[MoS4](2-) equivalence point. At lower sulfide concentrations, thiomolybdates are insufficiently stable to be competitive ligands in natural waters and at higher sulfide concentrations HS(-) ligands out-compete thiomolybdates.

Journal Article

Abstract  In this study, a biological system consisting of an up-flow anaerobic sludge blanket (UASB) and anoxic-oxic (A/O) reactor was established for the advanced treatment of high ammonium urban landfill leachate. The inhibitory effect of free ammonia (FA) and free nitrous acid (FNA) on the nitrifying bacterial activity was used to achieve stable nitritation in the A/O reactor. The results demonstrated that the biological system achieved chemical oxygen demand (COD), total nitrogen (TN) and NH(4)(+)-N removal efficiencies of 95.3, 84.6 and 99.2%, respectively at a low carbon-to-nitrogen ratio of 3:1. Simultaneous denitritation and methanogenesis in the UASB could improve the removal of COD and TN. Nitritation with above 90% nitrite accumulation was successfully achieved in the A/O reactor by synergetic inhibition of FA and FNA on the activity of nitrite oxidizing bacteria (NOB). Fluorescence in situ hybridization (FISH) analysis showed that ammonia oxidizing bacteria (AOB) was dominant and was considered to be responsible for the satisfactory nitritation performance.

  • <<
  • 5 of 400
  • >>
Filter Results