ISA-NOx (2016)

Project ID

1853

Category

NAAQS

Added on

April 3, 2012, 4:37 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  The Geospatial Determinants of Health Outcomes Consortium (GeoDHOC) study investigated ambient air quality across the international border between Detroit, Michigan, USA and Windsor, Ontario, Canada and its association with acute asthma events in 5- to 89-year-old residents of these cities. NO2, SO2, and volatile organic compounds (VOCs) were measured at 100 sites, and particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) at 50 sites during two 2-week sampling periods in 2008 and 2009. Acute asthma event rates across neighborhoods in each city were calculated using emergency room visits and hospitalizations and standardized to the overall age and gender distribution of the population in the two cities combined. Results demonstrate that intra-urban air quality variations are related to adverse respiratory events in both cities. Annual 2008 asthma rates exhibited statistically significant positive correlations with total VOCs and total benzene, toluene, ethylbenzene and xylene (BTEX) at 5-digit zip code scale spatial resolution in Detroit. In Windsor, NO2, VOCs, and PM10 concentrations correlated positively with 2008 asthma rates at a similar 3-digit postal forward sortation area scale. The study is limited by its coarse temporal resolution (comparing relatively short term air quality measurements to annual asthma health data) and interpretation of findings is complicated by contrasts in population demographics and health-care delivery systems in Detroit and Windsor.Journal of Exposure Science and Environmental Epidemiology advance online publication, 13 November 2013; doi:10.1038/jes.2013.78.

Journal Article

Abstract  ABSTRACT While evidence suggests associations between maternal exposure to air pollution and adverse birth outcomes, pregnant women's exposure to household air pollution in developing countries is understudied. Personal exposures of pregnant women (n = 100) in Trujillo, Peru to air pollutants and their indoor concentrations were measured. The effects of stove-use related characteristics and ambient air pollution on exposure were determined using mixed-effects models. Significant differences in 48-hr kitchen concentrations of particulate matter (PM2.5), carbon monoxide (CO), and nitrogen dioxide (NO2) concentrations were observed across fuel-types (p < 0.05). Geometric mean PM2.5 concentrations were 112 μg/m (3) (CLs: 52, 242 μg/m(3)) and 42 μg/m(3) (21, 82 μg/m(3)) in homes were wood and gas were used respectively. PM2.5 exposure was at levels which recent exposure-response analyses suggest may not result in substantial reduction in health risks even in homes where cleaner burning gas stoves were used.

Journal Article

Abstract  In recent decades, ambient air pollution has been an important public health issue in Beijing, but little is known about air pollution and health effects after the 2008 Beijing Olympics. We conduct a time-series analysis to evaluate associations between daily mortality (nonaccidental, cardiovascular and respiratory mortality) and the major air pollutants (carbon monoxide, nitrogen dioxide and particulate matter less than 10 µm in aerodynamic diameter) in Beijing during the two years (2009,2010) after the 2008 Beijing Olympics. We used generalized additive model to analyze relationship between daily mortality and air pollution. In single air pollutant model with two-day moving average concentrations of the air pollutants, increase in their interquartile range (IQR) associated with percent increase in nonaccidental mortality, 2.55 percent [95% confidence interval (CI): 1.99, 3.11] for CO, 2.54 percent (95% CI: 2.00, 3.08) for NO2 and 1.80 percent (95% CI: 1.21, 2.40) for PM10, respectively; increases in the IQR of air pollutant concentrations associated with percent increase in cardiovascular mortality, 2.88 percent (95% CI: 2.10,3.65) for CO, 2.63 percent (95% CI: 1.87, 3.39) for NO2 and 1.72 percent (95% CI: 0.88, 2.55) for PM10, respectively; and increase in IQR of air pollutant concentrations associated with respiratory mortality, 2.39 percent (95% CI: 0.68, 4.09) for CO, 1.79 percent (95% CI: 0.11, 3.47) for NO2 and 2.07 percent (95% CI: 0.21, 3.92) for PM10, respectively. We used the principal component analysis to avoid collinearity of varied air pollutants. In addition, the association stratified by sex and age was also examined. Ambient air pollution remained a significant contributor to nonaccidental and cardiopulmonary mortalities in Beijing during 2009,2010.

DOI
Journal Article

Abstract  Increases in surface ozone (O-3) and fine particulate matter (<= 2.5 mu m aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O-3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O-3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O-3 (defined as the maximum 6-month mean of 1-h daily maximum O-3 in a year) have increased by 8+/-0.16 mu gm(-3) and 30+/-0.16 ppbv (results reported as annual average +/-standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O-3) to change by +7.5+/-0.19 mu gm(-3) (+25+/-0.30 ppbv), +0.4+/-0.17 mu gm(-3) (+0.5+/-0.28 ppbv), and 0.04+/-0.24 mu gm(-3) (+4.3+/-0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2-1.8) million cardiopulmonary mortalities and 95 (95% CI, 44-144) thousand lung cancer mortalities annually and changes in O-3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O-3 respectively). However, changing climate and increasing CH4 concentrations also contribute to premature mortality associated with air pollution globally (by up to 5% and 15 %, respectively). In some regions, the contribution of climate change and increased CH4 together are responsible for more than 20% of the respiratory mortality associated with O-3 exposure. We find the interaction between climate change and atmospheric chemistry has influenced atmospheric composition and human mortality associated with industrial air pollution. Our study highlights the benefits to air quality and human health of CH4 mitigation as a component of future air pollution control policy.

Journal Article

Abstract  Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power, or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free-living population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. We found that information from CalFit could substantially alter exposure estimates. For instance, on average travel activities accounted for 6% of people's time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of enhancing epidemiologic exposure data at low cost.

Journal Article

Abstract  The aim of this study was to assess unconsciousness in pigs during and after the exposure to gas mixtures of 70% nitrogen (N(2)) and 30% carbon dioxide (CO(2)) (70N30C), 80% N(2) and 20% CO(2) (80N20C) and 85% N(2) and 15% CO(2) (85N15C) compared with 90% CO(2) in air (90C) by means of the Index of Consciousness(®)(IoC), their behaviour and the absence of brain stem reflexes. The experiment included three trials of 24 pigs divided into four groups according to the number of treatments. Half of the group was exposed for a short time and the other half for a long time (3 and 5 min for the N(2)/CO(2) mixtures exposure and 2 and 3 min in 90C exposure, respectively). During exposure, the IoC and the electroencephalography suppression rate (ESR) were assessed, as well as the time to onset and percentage of gasping, loss of balance, vocalizations, muscular excitation and gagging. At the end of the exposure, the corneal reflex, rhythmic breathing and sensitivity to pain were each assessed at 10 s intervals for 5 min. Brain activity decreased significantly (P < 0.05) 37.60 s after the start of the exposure to 90% CO(2), which was significantly earlier than in 70N30C, 80N20C and 85N15C exposure, (45.18 s, 46.92 s and 43.27 s, respectively). Before brain activity decreased, all pigs experienced gasping and loss of balance and a 98% muscular excitation. The duration of the muscular excitation was longer in animals exposed to 70N30C, 80N20C and 85N15C than 90C (P < 0.01). After a long exposure time, all animals exposed to 90C died, whereas the 30.4% of animals exposed to N(2)/CO(2) gas mixtures survived. Pigs exposed to 85N15C recovered corneal reflex and sensitivity to pain significantly earlier than when exposed to 90C. Exposure to 90C causes a higher aversive reaction but a quicker loss of consciousness than N(2)/CO(2) gas mixtures. Exposure to N(2)/CO(2) gas mixtures causes a lower percentage of deaths and an earlier recovery of the brain stem activity than 90C, whereas the time to recover the cortical activity is similar. In conclusion, the inhalation of N(2)/CO(2) gas mixtures reduces the aversion compared with high concentrations of CO(2); however, the period of exposure for inducing unconsciousness may be longer in N(2)/CO(2) gas mixtures, and the signs of recovery appear earlier, compared to CO(2).

Journal Article

Abstract  Quantifying human exposure to air pollutants is a challenging task. Ambient concentrations of air pollutants at potentially harmful levels are ubiquitous in urban areas and subject to high spatial and temporal variability. At the same time, every individual has unique activity-patterns. Exposure results from multifaceted relationships and interactions between environmental and human systems, adding complexity to the assessment process. Traditionally, approaches to quantify human exposure have relied on pollutant concentrations from fixed air quality network sites and static population distributions. New developments in sensor technology now enable us to monitor personal exposure to air pollutants directly while people are moving through their activity spaces and varying concentration fields. The literature review on which this paper is based on reflects recent developments in the assessment of human exposure to air pollution. This includes the discussion of methodologies and concepts, and the elaboration of approaches and study designs applied in the field. We identify shortcomings of current approaches and discuss future research needs. We close by proposing a novel conceptual model for the integrated assessment of human exposure to air pollutants taking into account latest technological capabilities and contextual information.

DOI
Journal Article

Abstract  In this work, a large eddy simulation (LES) model, which includes momentum and heat source (or sink) inside the tree planting layer, is proposed for the simulation of flow in a street canyon with tree planting. Vegetation canopy layer simulation shows that this model can be used to simulate the velocity distribution and temperature variation inside the canopy layer. Effects of atmospheric instability on flow and pollutant distribution in a street canyon with tree planting of an aspect ratio of 0.5 are studied. Results show that compared with the canyon with no tree planting (or the exposed street canyon), the canyon with tree planting shows a reduced wind circulation and pollutant exchange rate (PER) at the top layer of the street canyon, which induces the increase in the pollutant concentrations near road surface, leeward wall and windward wall. When street canyon atmosphere is under a strongly unstable condition, wind velocity decreases while pollutant concentration is increased in the areas near the street canyon top, road surface, leeward and windward walls, compared with the wind velocity in the street canyon with the neutral stratification. When street canyon atmosphere is under a weakly unstable condition, wind velocity weakens near the street canyon top and windward wall, but strengthens near the road surface and leeward wall, and pollutant concentration is decreased near the leeward and windward walls and is increased between the two rows of trees. When the street canyon atmosphere is under an unstable condition, PER is lower than that under the neutral stratification.

Journal Article

Abstract  Epidemiologic evidence has demonstrated that air pollution may impair cardiovascular health, leading to potentially life-threatening arrhythmias. Efforts have been made, with the use of epidemiologic data and controlled exposures in diverse animal and human populations, to verify the relationship between air pollution and arrhythmias. The purpose of this review is to examine and contrast the epidemiologic and toxicologic evidence to date that relates airborne pollutants with cardiac arrhythmia. We have explored the potential biological mechanisms driving this association. Using the PubMed database, we conducted a literature search that included the terms "air pollution" and "arrhythmia" and eventually divergent synonyms such as "particulate matter," "bradycardia," and "atrial fibrillation." We reviewed epidemiologic studies and controlled human and animal exposures independently to determine whether observational conclusions were corroborated by toxicologic results. Numerous pollutants have demonstrated some arrhythmic capacity among healthy and health-compromised populations. However, some exposure studies have shown no significant correlation of air pollutants with arrhythmia, which suggests some uncertainty about the arrhythmogenic potential of air pollution and the mechanisms involved in arrhythmogenesis. While data from an increasing number of controlled exposures with human volunteers suggest a potential mechanistic link between air pollution and altered cardiac electrophysiology, definite conclusions regarding air pollution and arrhythmia are elusive as the direct arrhythmic effects of air pollutants are not entirely consistent across all studies.

Journal Article

Abstract  BACKGROUND: The prevalence of Autistic Disorder (AD), a serious developmental condition, has risen dramatically over the past two decades but high-quality population-based research addressing etiology is limited. OBJECTIVES: We studied the influence of exposures to traffic-related air pollution during pregnancy on the development of autism using data from air monitoring stations and a land use regression (LUR) model to estimate exposures. METHODS: Children of mothers who gave birth in Los Angeles who were diagnosed with a primary AD diagnosis at ages 3-5 years during 1998-2009 were identified through the California Department of Developmental Services and linked to 1995-2006 California birth certificates. For 7,603 children with autism and 10 controls per case matched by sex, birth year, and minimum gestational age, birth addresses were mapped and linked to the nearest air monitoring station and a LUR model. We used conditional logistic regression, adjusting for maternal and perinatal characteristics including indicators of SES. RESULTS: Per interquartile range (IQR) increase, we estimated a 12-15% relative increase in odds of autism for O3 (OR = 1.12, 95% CI: 1.06, 1.19; per 11.54 ppb increase) and PM2.5 (OR = 1.15, 95% CI: 1.06, 1.24; per 4.68 μg/m3 increase) when mutually adjusting for both pollutants. Furthermore, we estimated 3-9% relative increases in odds per IQR increase for LUR-based NO and NO2 exposure estimates. LUR-based associations were strongest for children of mothers with less than a high school education. CONCLUSION: Measured and estimated exposures from ambient pollutant monitors and LUR model suggest associations between autism and prenatal air pollution exposure, mostly related to traffic sources.

Journal Article

Abstract  BACKGROUND: Prenatal and early life periods may be critical windows for harmful effects of air pollution on infant health. OBJECTIVES: We studied the association of air pollution exposure during pregnancy and the first year of life with respiratory illnesses, ear infections, and eczema during the first 12-18 months of age in a Spanish birth cohort of 2,199 infants. METHODS: We obtained parentally-reported information on doctor-diagnosed lower respiratory tract infections (LRTI), and parental reports of wheezing, eczema, and ear infections. We estimated individual exposures to nitrogen dioxide (NO2) and benzene with temporally-adjusted land use regression models. We used log-binomial regression models and a combined random-effects meta-analysis to estimate the effects of air pollution exposure on health outcomes across the four study locations. RESULTS: A 10-µg/m3 increase in average NO2 during pregnancy was associated with LRTI (RR = 1.05; 95% CI: 0.98, 1.12) and ear infections (RR = 1.18; 95% CI: 0.98, 1.41). The RRs for an interquartile range (IQR) increase in NO2 were 1.08 (95% CI: 0.97, 1.21) for LRTI and 1.31 (95% CI: 0.97, 1.76) for ear infections. Compared to NO2, the association for an IQR increase in average benzene exposure was similar for LRTI (RR = 1.06; 95% CI: 0.94, 1.19) and slightly lower for ear infections (RR = 1.17; 95% CI: 0.93, 1.46). Associations were slightly stronger among infants whose mothers spent more time at home during pregnancy. Air pollution exposure during the first year was highly correlated with prenatal exposure, thus we were unable to discern the relative importance of each exposure period. CONCLUSIONS: Our findings support the hypothesis that early life exposure to ambient air pollution may increase the risk of upper and lower respiratory tract infections in infants.

Journal Article

Abstract  The nitrate radical, NO(3), is photochemically unstable but is one of the most chemically important species in the nocturnal atmosphere. It is accompanied by the presence of dinitrogen pentoxide, N(2)O(5), with which it is in rapid thermal equilibrium at lower tropospheric temperatures. These two nitrogen oxides participate in numerous atmospheric chemical systems. NO(3) reactions with VOCs and organic sulphur species are important, or in some cases even dominant, oxidation pathways, impacting the budgets of these species and their degradation products. These oxidative reactions, together with the ozonolysis of alkenes, are also responsible for the nighttime production and cycling of OH and peroxy (HO(2) + RO(2)) radicals. In addition, reactions of NO(3) with biogenic hydrocarbons are particularly efficient and are responsible for the production of organic nitrates and secondary organic aerosol. Heterogeneous chemistry of N(2)O(5) is one of the major processes responsible for the atmospheric removal of nitrogen oxides as well as the cycling of halogen species though the production of nitryl chloride, ClNO(2). The chemistry of NO(3) and N(2)O(5) is also important to the regulation of both tropospheric and stratospheric ozone. Here we review the essential features of this atmospheric chemistry, along with field observations of NO(3), N(2)O(5), nighttime peroxy and OH radicals, and related compounds. This review builds on existing reviews of this chemistry, and encompasses field, laboratory and modelling work spanning more than three decades.

DOI
Journal Article

Abstract  To show how remote-sensing products can be used to classify the entire CONUS domain into 'geographical regions' and 'chemical regimes', we analyzed the results of simulation from the Community Multiscale Air Quality (CMAQ) model version 4.7.1 over the Conterminous United States (CONUS) for August 2009. In addition, we observe how these classifications capture the weekly cycles of ground-level nitrogen oxide (NOx) and ozone (O-3) at US EPA Air Quality System (AQS) sites. We use the Advanced Very High Resolution Radiometer (AVHRR) land use dominant categories and the Global Ozone Monitoring Experiment-2 (GOME-2) HCHO/NO2 column density ratios to allocate geographical regions (i.e., "urban", "forest", and "other" regions) and chemical regimes (i.e., "NOx-saturated", "NOx-sensitive", and "mixed" regimes). We also show that CMAQ simulations using GOME-2 satellite-adjusted NOx emissions mitigate the discrepancy between the weekly cycles of NOx from AQS observations and that from CMAQ simulation results. We found geographical regions and chemical regimes do not show a one-to-one correspondence: the averaged HCHO/NO2 ratios for AVHRR "urban" and "forest" regions are 2.1 and 4.0, which correspond to GOME-2 'mixed' and "NOx-sensitive" regimes, respectively. Both AQS-observed and CMAQ-simulated weekly cycles of NOx show high concentrations on weekdays and low concentrations on weekends, but with one- or two-day shifts of weekly high peaks in the simulated results, which eventually introduces the shifts in simulated weekly-low O-3 concentration. In addition, whereas the high weekend O-3 anomaly is clearly observable at sites over the GOME-2 NOx-saturated regime in both AQS and CMAQ, the weekend effect is not captured at sites over the AVHRR urban region because of the chemical characteristics of the urban sites (approximate to GOME-2 mixed regime). In addition, the weekend effect from AQS is more clearly discernible at sites above the GOME-2 NOx-saturated regime than at other sites above the CMAQ NOx-saturated regime, suggesting that the GOME-2-based chemical regime classification is more accurate than CMAQ-based chemical classification. Furthermore, the CMAQ simulations using the GOME-2-derived NOx emissions adjustment (decreasing from 462 Gg N to 426 Gg N over the US for August 2009) show large reductions of simulated NOx concentrations (particularly over the urban, or NOx-saturated, regime), and mitigates the large discrepancies between the absolute amount and the weekly pattern of NOx concentrations of the EPA AQS and those of the baseline CMAQ.

DOI
Journal Article

Abstract  This paper presents a study of the evolution of particles and gases downwind of a highway, with a focus on the diurnal variation of pollutant gradients and its controlling variables. A mobile laboratory was used to measure the concentration gradients of ultra-fine particles (UFP), black carbon (BC), CO2, NO, and NO2 at varying distances up to 850 m from a major highway. The horizontal distributions of pollutants show a strong diurnal pattern. Results suggest that the horizontal gradients are predominantly influenced by traffic levels, friction velocity, and atmospheric stability. The results were compared to a dispersion model, which showed good agreement with the measurements and was able to qualitatively capture the observed diurnal cycles. Emission rates [g km(-1)] calculated from the model fits are within 10% of the Mobile 6.2C inventory for CO2 and demonstrate good agreement for NOx, but are higher than the inventory by a factor between 2.0 and 5.9 for black carbon. Hourly NOx emission rates correlate with the fraction of heavy-duty vehicles in the total fleet and agree with inventory values based on maximum vehicle emission rates. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

DOI
Journal Article

Abstract  Photochemistry occuring in biomass burning plumes over the tropical south Atlantic is analyzed using data collected during the Transport and Atmospheric Chemistry Near the Equator-Atlantic aircraft expedition conducted during the tropical dry season in September 1992 and a photochemical point model. Enhancement ratios (Delta Y/Delta X, where Delta indicates the enhancement of a compound in the plume above the local background mixing ratio, Y are individual hydrocarbons, CO, O-3, N2O, HNO3, peroxyacetyl nitrate (PAN), CH2O, acetone, H2O2, CH3OOH, HCOOH, CH3COOH or aerosols and X is CO or CO2) are reported as a function of plume age inferred from the progression of Delta non-methane hydrocarbons/Delta CO enhancement ratios. Emission, formation, and loss of species in plumes can be diagnosed from progression of enhancement ratios from fresh to old plumes. O-3 is produced in plumes over at least a 1 week period with mean Delta O-3/Delta CO = 0.7 in old plumes. However, enhancement ratios in plumes can be influenced by changing background mixing ratios and by photochemical loss of CO. We estimate a downward correction of similar to 20% in enhancement ratios in old plumes relative to Delta CO to correct for CO loss. In a case study of a large persistent biomass burning plume at 4 -km we found elevated concentrations of PAN in the fresh plume. The degradation of PAN helped maintain NOx mixing ratios in the plume where, over the course of a week, PAN was converted to HNO3. Ozone production in the plume was limited by the availability of NOx, and because of the short lifetime of O-3 at 4 -km, net ozone production in the plume was negligible. Within the region, the majority of O-3 production takes place in air above median CO concentration, indicating that most O-3 production occurs in plumes. Scaling up from the mean observed Delta O-3/Delta CO in old plumes, we estimate a minimum regional O-3 production of 17 x 10(10) molecules O-3 cm(-2)s(-1). This O-3 production rate is sufficient to fully explain the observed enhancement in tropospheric 03 over the tropical South Atlantic during the dry season.

DOI
Journal Article

Abstract  With the industrialization in East Asia, greater amounts of ozone and acidic aerosols are transported to Japan. Yakushima Island (30A degrees 20'N, 130A degrees 31'E) is affected directly by long-range transboundary air pollution from the continent because there are no industrial areas and sources of pollution between the continent and the island. Recently, there has been a significant decline of Pinus amamiana in the island and the actual condition of air pollution was investigated. A significant amount of air pollutants were detected in winter. The daily mean tropospheric O(3) concentration was nearly 100 ppb in winter. A large amount of non-sea salt sulfate (nss-SO(4) (2-)) was deposited on the needle surfaces in the northwest part of the island and dry deposition rates of SO(4) (2-) were remarkably higher in February than in November. About half of the increase in SO(4) (2-) was nss-SO(4) (2-) and the rate in February was over four to five times as high as that in November. The load of dry deposition on the crown of trees was strongly influenced by the topographic position of the slope. The amount of deposited SO(4) (2-) was larger on trees growing on ridges and the tendency of P. amamiana to grow on ridges where it sticks out over 20 m enhances the load of dry deposition and O(3) on the needle surfaces. The potassium leakage and ethylene emission from needles were remarkably increased and the needle mass per area decreased from November to February. It was suggested that the additional input of nss-SO(4) (2-) acidifies the needle surface and accelerates leaf surface deterioration and leaching from needles and soils.

Journal Article

Abstract  Neonatal and postnatal exposures to air pollutants have adverse effects on lung development resulting in airway structure changes. Usually, generation-averaged analysis of airway geometric parameters is employed to differentiate between pulmonary airway trees. However, this method is limited, especially for monopodial branching trees such as in rat airways, because both quite proximal and less proximal airways that have very different structure and function may be in the same generation. To avoid limitations inherent in generation averaging, we developed a method that compares two trees airway-by-airway using micro CT image data from rat lungs. This computerized technique (1) identifies the geometry and architecture of the conducting airways from CT images, (2) extracts the main tree, (3) associates paired airways from the two different trees, and (4) develops summary statistics on the degree of similarity between populations of animals. By comparing the trees airway-by-airway, we found that the variance in airway length of the group exposed to diffusion flame particles (DFP) is significantly larger than the group raised in filtered air (FA). This method also found that rotation angle of the DFP group is significantly larger than FA, which is not as certain in the generation-based analysis. We suggest that airway-by-airway analysis complements generation-based averaging for detecting airway alterations.

Journal Article

Abstract  We conducted a multicity time-series study using monitoring data to assess seasonal patterns of short-term ozone-mortality association among elderly aged 65 years and over in Japan. Daily exposure to ambient ozone was computed using hourly measurements of photochemical oxidants available at multiple monitoring stations in each city. Effects of ozone on daily all-cause non-accidental, cardiovascular, and respiratory mortality were estimated using distributed lag linear models, controlling for confounding by temporal, day of the week, temperature, and flu epidemics. City-level effect estimates were combined using inverse variance meta-analysis. In spring and autumn, a 10-ppbv increase of daily maximum 8-h average ozone concentration in the previous 3 days was associated with 0.69 % (95 % confidence interval (CI): 0.27-1.10), 1.07 % (0.34-1.82), and 1.77 % (0.78-2.77) increases in daily all-cause, cardiovascular, and respiratory mortality, respectively. Forward displacement of respiratory mortality was large during the cold season despite lower ozone concentration. Results were generally independent of fine particulate matter and nitrogen dioxide. Findings suggest significant mortality effects of short-term ozone exposure among the elderly during the moderate season. Those with underlying respiratory diseases were susceptible, even during winter.

Journal Article

Abstract  Rationale: Cohort evidence linking long-term exposure to outdoor particulate air pollution and mortality has come largely from the United States. There is relatively little evidence from nationally representative cohorts in other countries. Objectives: To investigate the relationship between long-term exposure to a range of pollutants and causes of death in a national English cohort. Methods: A total of 835,607 patients aged 40-89 years registered with 205 general practices were followed from 2003-2007. Annual average concentrations in 2002 for particulate matter with a median aerodynamic diameter less than 10 (PM10) and less than 2.5 μm (PM2.5), nitrogen dioxide (NO2), ozone, and sulfur dioxide (SO2) at 1 km(2) resolution, estimated from emission-based models, were linked to residential postcode. Deaths (n = 83,103) were ascertained from linkage to death certificates, and hazard ratios (HRs) for all- and cause-specific mortality for pollutants were estimated for interquartile pollutant changes from Cox models adjusting for age, sex, smoking, body mass index, and area-level socioeconomic status markers. Measurements and Main Results: Residential concentrations of all pollutants except ozone were positively associated with all-cause mortality (HR, 1.02, 1.03, and 1.04 for PM2.5, NO2, and SO2, respectively). Associations for PM2.5, NO2, and SO2 were larger for respiratory deaths (HR, 1.09 each) and lung cancer (HR, 1.02, 1.06, and 1.05) but nearer unity for cardiovascular deaths (1.00, 1.00, and 1.04). Conclusions: These results strengthen the evidence linking long-term ambient air pollution exposure to increased all-cause mortality. However, the stronger associations with respiratory mortality are not consistent with most US studies in which associations with cardiovascular causes of death tend to predominate.

Journal Article

Abstract  Immune cell airway infiltration and the bronchovascular remodeling process have shown to be promising in the understanding of bronchiolitis obliterans (BO) pathogenesis. In this study we sought to validate the importance of immune cells, whether diffusely distributed or forming lymphoid follicles, collagen density, and vascular factors. Eight weeks after a single nitric acid (NA) nasal instillation, lung changes were characterized by lumen distortion, epithelial layer folding, reduction or total obliteration of terminal bronchiole (TB) lumen, and wall thickness increase. The morphologic changes in the TB and TA (terminal artery) lumen coincide with the measurement difference in the three groups. The TB diameter and lumen were significantly decreased in BO when compared with non-BO lungs (0.76 +/- 0.05 microm vs. 0.81 +/- 0.05 microm and 12,286.13 +/- 378.83 microm vs. 18,182.27 +/- 5,593.98 microm, p = 0.05 and p = 0.01, respectively). Equally significant was the increase in TB thickness in BO when compared with the non-BO group (201.72 +/- 35.75 microm vs. 149.75 +/- 40.61 microm, p = 0.007). The morphologic changes in immune cells seen in TB, TA, and bronchus-associated lymphoid tissue (BALT) also coincide with the quantification differences observed in the three groups. We concluded that immune cell infiltration and collagen/vascular remodeling are related to the spectrum of histologic changes in a BO nasal-induced model in mice and may be an appropriate target for prospective studies of human bronchiolitis.

Journal Article

Abstract  The vertebrate lung is elegantly patterned to carry out gas exchange and host defense. Similar to other organ systems, endogenous stem and progenitor cells fuel the organogenesis of the lung and maintain homeostasis in the face of normal wear and tear. In the context of acute injury, these progenitor populations are capable of effecting efficient repair. However, chronic injury, inflammation, and immune rejection frequently result in pathological airway remodeling and serious impairment of lung function. Here, we review the development, maintenance, and repair of the vertebrate respiratory system with an emphasis on the roles of epithelial stem and progenitor cells. We discuss what is currently known about their identities, lineage relationships, and the mechanisms that regulate their differentiation along various lineages. A deeper understanding of these progenitor populations will undoubtedly accelerate the discovery of improved cellular, genetic, molecular, and bioengineered therapies for lung disease.

Journal Article

Abstract  Chest radiographic and high-resolution computed tomography findings of 3 patients with inhalational lung injury due to nitrogen dioxide were reported. Chest radiographs showed ill-defined round opacities which tended to coalesce in both lung with inner lung predominance. High-resolution computed tomography showed ground-glass attenuation and ill-defined centrilobular nodules distributed predominantly in the inner and middle lung zones. One patient showed progression of opacities, which corresponded to the findings of acute respiratory distress syndrome.

DOI
Journal Article

Abstract  A regulation was implemented on 9/1/2009, excluding Euro 0, I and II heavy duty vehicles from entering Amsterdam's Low Emission Zone (LEZA). The current study investigated whether and to what extent this regulation had an effect on air quality. Data for a period starting two years before the regulation up to 31 December 2010 were obtained from two monitoring sites within the LEZA, one located in a street frequently used by heavy-duty vehicles, and one at an urban background location. The difference in concentrations of NO2, NOx, PM10 and soot, between the two sites was attributed to traffic. Soot was measured by two proxies, Elemental Carbon (EC) and Absorbance that showed a significant mutual correlation. The traffic contribution concentrations measured were adjusted for wind direction, wind speed, type of day (weekday/weekend) and traffic intensity. Since the implementation of the LEZA, the traffic contribution concentrations compared to the roadside site concentrations were decreased by 4.9% (95%-CI: 3.0-6.9%) for NO2, 5.9% (95%-CI: 3.7-6.4%) for NOx, 5.8% (95%-CI: 3.3-8.4%) for FM10, 7.7% (95%CI: 2.3-13.0%) for Absorbance and 12.9% (95%-CI: 5.2-20.5%) for EC. The current study demonstrated significant decreases in traffic-related air pollution concentrations in the vicinity of a roadside monitoring station after the implementation of a low emission zone in Amsterdam. (C) 2014 Elsevier Ltd. All rights reserved.

  • <<
  • 1 of 338
  • >>
Filter Results