n-Butanol

Project ID

1542

Category

IRIS

Added on

Dec. 14, 2010, 3:50 p.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  For four decades, the Draize test has remained the accepted method for evaluating eye irritation. Criticisms center around the inhumane treatment of animals and the irreproducibility of the subjective scoring procedure. The objective of this study was to determine if changes in corneal thickness obtained using a slit-lamp pachometer could be used to replace the Draize scoring procedure and provide a method for quantifying ocular irritation. Twenty-four chemicals (six surfactants, seven alcohols, four ketones, four acetates, and three aromatics) were instilled in the conjunctival sacs of rabbits and irritation monitored by Draize scoring and changes in corneal thickness. The Draize procedure was more adept at detecting minor conjunctival damage, but corneal thickness exhibited less variation and increased sensitivity for detection of healing reactions. A significant linear correlation (y = l.736x + 92.883) was established between Draize score and corneal thickness changes with a correlation coefficient (r) of 0.86 and an F-value for regression of 261.3. Using these findings, an ocular irritation ranking system is proposed based upon the percentage of corneal swelling. Ocular irritation potential was ranked for the chemical groups tested (surfactants> alcohols> ketones or acetates> aromatics). Quantitation of ocular irritation from changes in corneal thickness provides objective, numerical data applicable to standard parametric statistical procedures. This should eliminate the subjective bias inherent to Draize scoring and decrease intra- and interlaboratory variability. ® 1989 Society orToxicology.

Book/Book Chapter

Abstract  The public depends on competent risk assessment from the federal government and the scientific community to grapple with the threat of pollution. When risk reports turn out to be overblown--or when risks are overlooked--public skepticism abounds. This comprehensive and readable book explores how the U.S. Environmental Protection Agency (EPA) can improve its risk assessment practices, with a focus on implementation of the 1990 Clean Air Act Amendments. With a wealth of detailed information, pertinent examples, and revealing analysis, the volume explores the "default option" and other basic concepts. It offers two views of EPA operations: The first examines how EPA currently assesses exposure to hazardous air pollutants, evaluates the toxicity of a substance, and characterizes the risk to the public. The second, more holistic, view explores how EPA can improve in several critical areas of risk assessment by focusing on cross-cutting themes and incorporating more scientific judgment. This comprehensive volume will be important to the EPA and other agencies, risk managers, environmental advocates, scientists, faculty, students, and concerned individuals.

Journal Article

Abstract  The purpose of this study was to assess the utility of the thermoregulatory system as an end point in predicting the toxicity of various short-chain alcohols. Male Fischer rats developed significant hypothermia following acute administration (ip) of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, or 2-butanol. The hypothermic responses to the six alcohols all showed similar segmented responses characterized by a threshold dose below which no change in body temperature occurred, and a suprathreshold regression with increasing dose causing greater hypothermia. Relative potency of the alcohols was assessed using both the threshold dose to cause hypothermia and the dose that would cause body temperature to decrease by 1 degree C. Both measures gave the progression of toxicity from least to most potent of methanol less than ethanol less than 2-propanol less than 1-propanol less than 2-butanol less than 1-butanol. The effective dose of each alcohol was compared to its membrane/buffer partition coefficient (Pm/b), and there was a high inverse correlation between the hypothermic dose of an alcohol and its lipid solubility. That the potency of an alcohol was strongly correlated with its Pm/b suggests that the membrane disordering theory of narcosis may also be used to explain the hypothermic action of alcohols.

Journal Article

Abstract  Ornithine carbamyl transferase (OCT), an enzyme found predominantly in the liver, is released into the bloodstream when liver cells are ruptured. The measurement of serum OCT activity is a convenient, specific, and sensitive assay of liver damage. This test was used to evaluate the effect of several widely used solvents on the livers of guinea pigs. Each solvent was administered intraperitoneally, and 24 hours later serum OCT activity was measured. Many of the solvents tested failed to increase serum OCT activity even at near-lethal doses. Of the thirty-three solvents evaluated, two produced elevations in serum OCT activity at relatively low doses (less than 50 mg/kg), five at moderate doses (50 to 500 mg/kg), and nine at high doses (greater than 500 mg/kg).

Journal Article

Abstract  The characteristics of chlorate (ClO(3)(-)) and perchlorate (ClO(4)(-)) formation were studied during the electrolysis of water containing chloride ions (Cl(-)). The experiments were performed using an undivided Pt/Ti plate electrode under different pH conditions (pH 3.6, 5.5, 7.2, 8.0 and 9.0). ClO(3)(-) and ClO(4)(-) were formed during electrolysis in proportion to the Cl(-) concentration. The generation rates of ClO(3)(-) and ClO(4)(-) under acidic conditions (pH 3.6 and 5.5) were lower than in basic pH conditions (pH 7.2, 8.0 and 9.0). However, the pH of the solution did not influence the conversion of ClO(3)(-) to ClO(4)(-). The effects of intermediately formed oxidants on the production of ClO(3)(-) and ClO(4)(-) were observed using sodium thiosulfate (Na(2)S(2)O(3)) as the active chlorine scavenger and tertiary butyl alcohol (t-BuOH) as the hydroxyl radical (OH) scavenger. The results revealed that electrolysis reactions that involved active chlorine contributed dominantly to ClO(3)(-) production. The direct oxidation reaction rate of Cl(-) to ClO(3)(-) was 13%. The OH species that were intermediately formed during electrolysis were also found to significantly affect ClO(3)(-) and ClO(4)(-) production. The key formation pathways of ClO(3)(-) and ClO(4)(-) were studied using kinetic model development.

Journal Article

Abstract  Occupational exposure to butter flavoring vapors (BFV) is associated with significant pulmonary injury. The goal of the current study was to characterize inhalation dosimetric patterns of diacetyl and butyric acid, two components of BFV, and to develop a hybrid computational fluid dynamic-physiologically based pharmacokinetic model (CFD-PBPK) to describe these patterns. Uptake of diacetyl and butyric acid vapors, alone and in combination, was measured in the upper respiratory tract of anesthetized male Sprague-Dawley rats under constant velocity flow conditions and the uptake data were used to validate the CFD-PBPK model. Diacetyl vapor (100 or 300 ppm) was scrubbed from the airstream with 76-36% efficiency at flows of 100-400 ml/min. Butryic acid (30 ppm) was scrubbed with >90% efficiency. Concurrent exposure to butyric acid resulted in a small but significant reduction of diacetyl uptake (36 vs. 31%, p < 0.05). Diacetyl was metabolized in nasal tissues in vitro, likely by diacetyl reductase, an enzyme known to be inhibited by butyric acid. The CFD-PBPK model closely described diacetyl uptake; the reduction in diacetyl uptake by butyric acid could be explained by inhibition of diacetyl reductase. Extrapolation to the human via the model suggested that inspired diacetyl may penetrate to the intrapulmonary airways to a greater degree in the human than in the rat. Thus, based on dosimetric relationships, extrapulmonary airway injury in the rat may be predictive of intrapulmonary airway injury in humans. Butyric acid may modulate diacetyl toxicity by inhibiting its metabolism and/or altering its inhalation dosimetric patterns.

Journal Article

Abstract  In the present study, the role of nitric oxide (NO) in the regulation of lateral root (LR) formation in rice was examined. Application of sodium nitroprusside (SNP; a NO donor) and indole-3-butyric acid (IBA; a naturally occurring auxin) to rice seedlings induced LR formation. The effect is specific for NO because the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide (cPTIO) blocked the action of SNP and IBA. Endogenous NO was detected by the specific fluorescence probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. SNP- and IBA-induced NO fluorescence was specifically suppressed by cPTIO. Nitrate reductase (NR) inhibitor sodium tungstate completely inhibited IBA-induced LR formation and NO fluorescence. However, nitric oxide synthase inhibitor N (G)-nitro-L: -arginine methyl ester hydrochloride slightly reduced IBA-induced LR formation and NO generation. It appears that NO generation that occurs in response to IBA might primarily involve NR activity. Moreover, NO production caused by SNP and IBA was localized in root area corresponding to LR emergence. The effects of Ca(2+) chelators, Ca(2+)-channel inhibitors, and calmodulin antagonists on LR formation induced by SNP and IBA were also examined. All these inhibitors were effective in reducing the action of SNP and IBA. However, Ca(2+) chelators and Ca(2+)-channel inhibitors had no effect on SNP- and IBA-induced NO generation. It is concluded that cytosolic levels of Ca(2+) may regulate SNP and IBA action through calmodulin-dependent mechanism.

DOI
Book/Book Chapter
Journal Article

Abstract  Guideline developers around the world are inconsistent in how they rate quality of evidence and grade strength of recommendations. As a result, guideline users face challenges in understanding the messages that grading systems try to communicate. Since 2006 the BMJ has requested in its “Instructions to Authors” on bmj.com that authors should preferably use the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system for grading evidence when submitting a clinical guidelines article. What was behind this decision? In this first in a series of five articles we will explain why many organisations use formal systems to grade evidence and recommendations and why this is important for clinicians; we will focus on the GRADE approach to recommendations. In the next two articles we will examine how the GRADE system categorises quality of evidence and strength of recommendations. The final two articles will focus on recommendations for diagnostic tests and GRADE’s framework for tackling the impact of interventions on use of resources. GRADE has advantages over previous rating systems. Other systems share some of these advantages, but none, other than GRADE, combines them all.

Journal Article

Abstract  Gating of voltage-gated K(+) channels (K(v) channels) depends on the electromechanical coupling between the voltage sensor and activation gate. The main activation gate of K(v) channels involves the COOH-terminal section of the S6 segment (S6-b) and the S4-S5 linker at the intracellular mouth of the pore. In this study, we have expanded our earlier work to probe the concerted contribution of these regions to the putative amphipathic 1-alkanol site in the Shaw2 K(+) channel. In the S4-S5 linker, we found a direct energetic correlation between alpha-helical propensity and the inhibition of the Shaw2 channel by 1-butanol. Spectroscopic structural analyses of the S4-S5 linker supported this correlation. Furthermore, the analysis of chimeric Shaw2 and K(v)3.4 channels that exchanged their corresponding S4-S5 linkers showed that the potentiation induced by 1-butanol depends on the combination of a single mutation in the S6 PVPV motif (PVAV) and the presence of the Shaw2 S4-S5 linker. Then, using tandem-heterodimer subunits, we determined that this potentiation also depends on the number of S4-S5 linkers and PVAV mutations in the K(v) channel tetramer. Consistent with the critical contribution of the Shaw2 S4-S5 linker, the equivalent PVAV mutation in certain mammalian K(v) channels with divergent S4-S5 linkers conferred weak potentiation by 1-butanol. Overall, these results suggest that 1-alkanol action in Shaw2 channels depends on interactions involving the S4-S5 linker and the S6-b segment. Therefore, we propose that amphiphilic general anesthetic agents such as 1-alkanols may modulate gating of the Shaw2 K(+) channel by an interaction with its activation gate.

Journal Article

Abstract  Ethanol inhibits astroglial cell proliferation, an effect that may contribute to the development of alcoholic embryopathy in humans. In the present study, we investigated inhibitory effects of ethanol and butanol isomers (1-, 2- and t-butanol) on astroglial cell proliferation induced by the strongly mitogenic phorbol ester, 4beta-phorbol-12alpha,13beta-dibutyrate (PDB). 4beta-Phorbol-12alpha,13beta-dibutyrate (PDB) induced a 10-fold increase of [3H] thymidine incorporation in cortical astrocytes prepared from newborn rats (EC50: 70 nM) which was blocked by Ro 31-8220, a cell-permeable protein kinase C (PKC) inhibitor. Ethanol blocked PDB-induced astroglial proliferation in a concentration-dependent manner; significant effects were already seen at 0.1% (v/v). Concomitantly, ethanol caused the formation of phosphatidylethanol (PEth) by phospholipase D (PLD) and reduced PLD-mediated formation of phosphatidic acid (PA). The butanols also inhibited the mitogenic action of phorbol ester; the inhibitory potency of the butanols was 1-butanol > 2-butanol > t-butanol. The same range of potencies was observed for the inhibitory activity of the butanols towards protein kinase C activity measured in vitro. At 0.3% concentration, 1-butanol potently suppressed the PDB-induced formation of phosphatidic acid while 2- and t-butanol were less active. Taken together, our results suggest that ethanol and 1-butanol exert a specific inhibitory effect on PKC-dependent astroglial cell proliferation by synergistically inhibiting PKC activity and the PLD signaling pathway.

Journal Article

Abstract  The family approach for related compounds can be used to evaluate hazard and estimate reference concentrations/doses using internal dose metrics for a group (family) of metabolically related compounds. This approach is based upon a simple four-step framework for organizing and evaluating toxicity data: 1) exposure, 2) tissue dosimetry, 3) mode of action, and 4) response. Expansion of the traditional exposure-response analysis has been increasingly incorporated into regulatory guidance for chemical risk assessment. The family approach represents an advancement in the planning and use of toxicity testing that is intended to facilitate the maximal use of toxicity data. The result is a methodology that makes toxicity testing and the development of acceptable exposure limits as efficient and effective as possible. An example is provided using butyl acetate and its metabolites (butanol, butyraldehyde, and butyrate), widely used chemicals produced synthetically by the industrial oxo process. A template pharmacokinetic model has been developed that comprises submodels for each compound linked in series. This preliminary model is being used to coordinately plan toxicity studies, pharmacokinetic studies, and analyses to obtain reference concentrations/doses. Implementation of the family approach using pharmacokinetic modeling to obtain tissue dose metrics is described and its applications are evaluated.

Journal Article

Abstract  1. 5-HT3 receptor-mediated ion current was recorded from NCB-20 neuroblastoma cells using the whole-cell patch-clamp technique. Rapid drug superfusion was used to study the mechanism of alcohol potentiation of 5-HT3 receptor function and to analyse effects of alcohols on receptor-channel kinetics in detail. 2. Trichloroethanol (TCEt) increased in a dose-dependent way the initial slope, 20-80% rise time and measured desensitization rate of the current induced by low concentrations (1-2 microM) of 5-HT. Ethanol (EtOH) and butanol (ButOH) had similar effects on the 5-HT3 receptor-induced current. 3. TCEt and ButOH decreased the measured desensitization rate of current induced by 10 microM 5-HT, a maximally effective concentration of agonist. These alcohols also increased the relative amplitude of steady state to peak current induced by 2 or 10 microM 5-HT, indicating a possible decrease in the intrinsic rate of desensitization. 4. TCEt also decreased the deactivation rate of the current activated by 2 microM 5-HT after a short pulse of agonist application. 5. Current sweeps generated by 1 microM 5-HT in the presence or absence of 10 mM TCEt or 100 mM EtOH were well fitted using a modified standard kinetic model derived from the nicotinic acetylcholine receptor. This analysis indicated that potentiation by alcohols could be accounted for by increases in the association rate constant coupled with decreases in the dissociation and desensitization rate constants. 6. This study suggests that alcohols potentiate 5-HT3 receptor-mediated current by both increasing the rate of channel activation and stabilizing the open state by decreasing the rates of channel deactivation and desensitization.

Journal Article

Abstract  During in vitro culture of murine preimplantation embryos, we have observed that exposure to 0.1% ethanol induces an immediate increase in intracellular calcium levels and subsequently accelerates embryogenesis. If the observed effects of ethanol on developing embryos is mediated by its membrane disordering potency, we hypothesized that the relative membrane disordering potencies of related alcohols would correspondingly effect embryonic intracellular calcium levels and developmental rates. Two-cell embryos were exposed to 0.1% ethanol or 0.05 to 1.0% (w/v) n-butanol, n-propanol, isopropanol, 1,2-propanediol, glycerol, or methanol for 24 hr at 37 degrees C, and development to the blastocyst stage was monitored after 5 days. n-Butanol, n-propanol, isopropanol, and methanol treatment caused a dose-dependent inhibition (p < 0.01) of development to the blastocyst stage, whereas 1,2-propanediol or glycerol neither accelerated nor inhibited development. In a second experiment, 8-cell morulae were treated with 1,2-propanediol or glycerol, and cavitation rates were examined. There was no significant difference from control embryos in the onset of cavitation or the blastocoel expansion rate of 1,2-propanediol- or glycerol-exposed embryos, whereas exposure to 0.1% ethanol accelerate cavitation (p > 0.05). In a third experiment, morulae were exposed to 0.1% or 1.0% of each alcohol and were monitored for changes in intracellular calcium levels using the fluorescent indicator, fluo-3-acetoxymethyl ester. There was an immediate increase in intracellular calcium levels when morulae were treated with 1.0% ethanol or n-butanol, but only ethanol induced an increase (p < 0.05) in the level of intracellular calcium at 0.1%. These data suggest that ethanol is unique in its ability to accelerate embryogenesis and that the membrane disordering potency of ethanol does not directly underlie its effects on intracellular calcium release and the acceleration of preimplantation development.

Journal Article

Abstract  Female rats were given aqueous solutions of n-butanol containing 0.24, 0.8 and 4% n-butanol (0.3; 1.0 and 5.0 g/kg/day) for 8 weeks before and during gestation. The control animals received tap water. The experiment was performed in two stages. The first comprised of the assessment of the oestrous cycle before exposure and then during 4-5 and 7-8 weeks of exposure, and the second stage of the fertility of female rats and their foetal development. The duration of the cycle and its individual stages in the control and the exposed females were similar. It was found that n-butanol alcohol is a foetotoxic agent and produces developmental anomalies in a foetus's skeleton and central nervous system.

Journal Article

Abstract  We recently reported that ethanol and other aliphatic alcohols exert a selective inhibition on the binding of enkephalins to delta opioid binding sites. We report here a more detailed investigation of the characteristics of this inhibition. Opioid binding sites of the kappa subtype are similar to mu opioid binding sites in their relative insensitivity to inhibition by aliphatic alcohols. Scatchard analysis of saturation data of enkephalin binding showed that inhibition is the result of a decrease in affinity. Results of kinetic experiments demonstrated that the inhibition can be entirely accounted for by an increase in the dissociation rate of the ligand-receptor complex. The presence of sodium ions in the incubation medium and raising the temperature of incubation exacerbate the inhibitory effectiveness of alcohols. The order of potency among structural isomers of alcohols for inhibition of delta receptor binding is as follows: straight-chain primary greater than isoprimary greater than secondary greater than tertiary. The order of inhibitory potency of the aliphatic alcohols tested correlates well with their ability to disorder the cell membrane lipid bilayer. It is suggested that this is a probable mechanism by which alcohols inhibit binding to delta opioid binding sites.

Journal Article

Abstract  Administration of single doses of ethanol, 1-propanol, 1-butanol or 1-pentanol to mice caused hypothermia and impairment of rotarod performance. Repetitive doses, at 24-72 hr intervals led to development of tolerance to the hypothermic effects of ethanol but not of the other alcohols. No tolerance was seen in the impairment of rotarod performance with repeated doses of any of the alcohols. Ethanol did show an intersession tolerance on rotarod performance; at 20 and 80 min after injection, blood levels were similar, while performance was impaired at 20 but not at 80 min.

Journal Article

Abstract  Exposure to n-butanol vapour gave rise to a sensory irritation response which was measured by the reflexively induced decrease in respiratory rate in mice according to the American standard method (E981-84). The response reached maximum within the 1st min of exposure. In this period the expected threshold response (RD-0) and the concentration expected to depress the respiratory rate by 50% (RD-50) were extrapolated to be 233 ppm and 11,696 ppm, respectively. The response followed the dynamics of a bimolecular reaction between butanol and the sensory irritant receptor. For concentrations below 3000 ppm, the response faded due to desensitization. However, concentrations above 3000 ppm gave rise to a new decrease in respiratory rate due to activation of lung receptors. Two types of lung receptors, probably J-receptors and stretch receptors, were involved. The sensory irritation response measured by the standard method gave a threshold response which was comparable to that found by electrophysiological experiments in rats. The irritation response in man as well as the maximum allowable concentration in the working environment were adequately predicted from the sensory irritation response in mice.

Journal Article

Abstract  Two concentrations of 1-butanol (3000 and 6000 ppm) were administered by inhalation to separate groups of 15 pregnant Sprague-Dawley rats for 7 hr per day throughout gestation; 18 male rats were similarly exposed for 7 hr per day for 6 weeks, and mated to unexposed females. Litters were culled to 4 female and 4 male pups and fostered to untreated controls. From days 10-90, offspring were tested as follows: a) ascent on a wire mesh screen, b) rotorod, c) open field and photoelectrically-monitored activity, d) running wheel, e) avoidance conditioning, and f) operant conditioning. Additionally, brains from 10 offspring at 21 days of age were dissected into cerebrum, cerebellum, brainstem, and midbrain. Each sample was assayed for protein and the neurotransmitters acetylcholine, dopamine, norepinephrine, serotonin, met-enkephalin, beta-endorphin, and substance P. Overall, there were few behavioral or neurochemical alterations detected in the offspring following maternal or paternal exposure to either 3000 or 6000 ppm 1-butanol. This scarcity of effects is important to risk assessment extrapolations drawn from ethanol. Based on the structural similarity of 1-butanol to ethanol and long-standing observations that toxicity to adult animals generally increases with chain length among the alcohols, significant behavioral and neurochemical deviations were predicted. The scarcity of effects from butanol needs to be accounted for in hypotheses relating toxicity to alcohol chain length and in risk assessment extrapolations from findings with ethanol.

Journal Article

Abstract  Long-term treatment of rats with n-butanol leads to a change in in vitro brain protein synthesis which increases the resistance of this process to either ethanol or isopropanol. The change seems to be related to ribosomal events since the synthesis of aminoacyl-tRNA was not affected in the same conditions.

Journal Article

Abstract  We have assessed the morphometric parameters of rat small intestinal microvillous vesicles, prepared by a Ca(2+)-precipitation method, from normal, long term ethanol-treated and pair-fed saccharose -treated control rats. The vesicles from normal rats were also directly exposed to ethyl, butyl and benzyl alcohols, respectively. Computerized morphometric analysis was carried out on electron micrographs of microvillous vesicles. The size of vesicles from ethanol-treated rats, as well as control rats, was significantly reduced as compared to normals. Direct exposure of vesicles to alcohols significantly increased vesicle dimensions, with a potency order reflecting the liposolubility of alcohols. These data support the hypothesis that variations in vesicle diameter may be ascribed at least in part to the fluidizing effect of alcohols. Thiamin transport by the vesicles has been measured in the presence of ethanol. The time course of thiamin uptake was not affected by ethanol.

  • <<
  • 2 of 239
  • >>
Filter Results