n-Butanol

Project ID

1542

Category

IRIS

Added on

Dec. 14, 2010, 3:50 p.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  BACKGROUND: Colon cancer is one of the leading causes of cancer related deaths. Its impact on African Americans (AAs) is higher than in the general population both in the incidence and mortality from the disease. Colon cancer aggressiveness in AAs as well as non-frequent check-ups and follow up in this population have been proposed as ways to explain the observed discrepancies. These facts made the detection of early carcinogenesis markers in this population a priority.

MATERIALS AND METHODS: Here, we analyzed 50 colon adenomas from AA patients for both microsatellite instability (MSI) and the methylation status of SLC5A8 gene. This gene's product is involved in the transport of butyrate that has anti-proliferative properties through its effects on histone acetylation and gene expression. A proteomic analysis to check the expressed histones in adenoma and normal tissues was also performed.

RESULTS: The analyzed samples displayed 82% (n = 41) methylation level of SLC5A8 gene in adenomas. The MSI-H (high) adenoma were about 18% (n = 9) while the rest were mostly MSS (microsatellite stable) with few MSI-L (Low). No association was found between SLC5A8 methylation and the MSI status. Also, there was no association between SLC5A8 methylation and the sex and age of the patients. However, there were more right sided adenomas with SLC5A8 methylation than the left sided ones. The proteomic analysis revealed distinct histone expression profiles between normal and adenoma tissues.

CONCLUSION: SLC5A8 is highly methylated in AA colon adenomas which points to its potential use as a marker for early detection. The MSI rate is similar to that found in colon cancer tumors in AAs. These findings suggest that both processes stem from the same epigenetic and genetic events occurring at an early stage in colon carcinogenesis in AAs.

Journal Article

Abstract  The combination of sodium butyrate (NaB) and ganciclovir (GCV) was considered to be a noteworthy therapeutic strategy in Epstein-Barr virus (EBV)-associated cancers. However, clinical studies have indicated that an extremely high dose of NaB is required to obtain the expected curative efficacy. This obviously limits the practical clinical application of the two drugs combined. In this study, we investigated the possibility of sensitizing tumor cells to NaB and GCV mediated cytotoxicity by modulating intracellular signal pathways. The results showed that the disruption of Ras/Raf activity by expressing dominant negative forms of both Ras and Raf-1 did not alter the potency of the NaB and GCV combination in the EBV-positive cell line, B95-8. However, blocking Akt activity by expressing its dominant negative form remarkably promoted NaB and GCV-mediated cytotoxicity via a thymidine kinase (TK)-independent mechanism. Interestingly, it was found that the constitutive activation of mitogen-activated protein kinase kinase kinase 1 (MEKK1) dramatically enhanced the sensitization of the cells to the combination of NaB and GCV, accompanied with an increase in TK expression in B95-8 cells. These results suggest that interfering with either the Akt or MEKK1 signaling pathway may be a useful therapeutic strategy to increase the sensitivity of EBV-positive tumor cells to the combination of NaB and GCV.

Journal Article

Abstract  The antiangiogenic and antineoplastic activities of the butyric acid prodrugs AN-7 and AN-9 were demonstrated in vitro with HUVEC by inhibition of proliferation and vascular tubes formation, enhanced apoptosis, and inhibition of 22Rv-1 cells migration. In the sc implanted human prostate tumors (22Rv-1) in nude mice, AN-7 significantly inhibited Ki-67, HIF-1alpha, HER-2/neu, bFGF and increased PTEN level. AN-7 and AN-9 reduced hemoglobin accumulation in matrigel plugs implanted sc in Balb-c mice. Herein, we show that the anticancer activity of AN-7 and AN-9 can be attributed in part to their antiangiogenic activities suggesting potential therapeutic benefits for prostate cancer patients.

Journal Article

Abstract  OBJECTIVE: There is a need for otoprotective agents that can be administered systemically without compromising cancer treatment. Histone deacetylase inhibitors are anticancer agents that act by upregulating the expression of cell-cycle control genes. They are also neuroprotective, leading us to hypothesize that they might be otoprotective. The goal of this study was to determine if the antitumor agent sodium butyrate (a histone deacetylase inhibitor) protects against cisplatin ototoxicity when administered systemically.

STUDY DESIGN: This was an animal study.

METHODS: : Cisplatin was administered to guinea pigs who received either 12 days of sodium butyrate (7 d before and 5 d after cisplatin) or equivolume saline injections. Hearing was tested with distortion product otoacoustic emission (DPOAE) analysis before the start of the study and 2 weeks after cisplatin treatment.

RESULTS: Guinea pigs given a single intraperitoneal injection of 14 mg/kg cisplatin experience a mean hearing loss of 8 dB across the frequencies of 3.5, 5, 7, 10, 14, and 20 kHz. Intraperitoneal injection of 1.2 mg/kg sodium butyrate per day for 7 days before and 5 days after cisplatin almost completely eliminates this threshold shift (P=.0011).

CONCLUSIONS: The histone deacetylase inhibitor sodium butyrate gives almost complete protection in a single-dose model of cisplatin ototoxicity in guinea pigs. Because histone deacetylase inhibitors are anticancer agents with very few side effects, they may be candidates for clinical use during cisplatin chemotherapy.

Journal Article

Abstract  Protein kinase C (PKC) isoenzymes are expressed and activated in a cell type-specific manner, and play an essential role in tissue-specific signal transduction. The presence of butyrate at millimolar concentrations in the colon raises the question of whether it affects the expression of PKC isoenzymes in the different cell types of the colonic epithelium. We investigated the protein expression levels of PKCgamma, Thr(514)-phosphorylated PKCgamma (pPKCgamma-Thr(514)), and their subcellular distribution as affected by butyrate in a set of colon cancer cell lines. Thr(514)-phosphorylation of de novo synthesized PKCgamma is the first step in priming of the inactive PKCgamma before its release into the cytoplasm. For immunoblot analysis, we employed three antibodies, one against an unmodified sequence, mapping within 50 amino acids at its C-terminus, a second against pPKCgamma-Thr(514), and a third against pPKCgamma-pan-Thr(514). The antibody against an unmodified C-terminal peptide epitope did not recognize pPKCgamma-Thr(514), suggesting that phosphorylation at this site interferes with the binding of the antibody to the C-terminus. Marked butyrate-induced upregulation of PKCgamma occurred in HT29 cells (model for colonocyte stem cells) and HT29-derived cell lines. However, in Caco2 and IEC-18 cells (models for differentiated intestinal epithelial cells), PKCgamma was insensitive to upregulation, and present exclusively as pPKCgamma-Thr(514). Lovo and SW480 expressed higher levels of PKCgamma. In HT29 cells, butyrate-induced upregulation of the non-phosphorylated PKCgamma was observed in both the membrane and the cytosolic fraction. In Caco2 cells, the Thr(514)-phosphorylated form was present at high levels in both fractions. The presence of unphosphorylated PKCgamma in HT29 cells, and its complete absence in Caco2 cells demonstrates a cell type-dependent differential coupling of Thr(514)-phosphorylation with de novo synthesis of PKCgamma in colon cancer cells.

Journal Article

Abstract  The gut microflora in some patients with Crohn's disease can be reduced in numbers of butyrate-producing bacteria and this could result in metabolic stress in the colonocytes. Thus, we hypothesized that the short-chain fatty acid, butyrate, is important in the maintenance and regulation of the barrier function of the colonic epithelium.

Confluent monolayers of the human colon-derived T84 or HT-29 epithelial cell lines were exposed to dinitrophenol (DNP (0.1 mM), uncouples oxidative phosphorylation) + Escherichia coli (strain HB101, 10(6) cfu) +/- butyrate (3-50 mM). Transepithelial resistance (TER), and bacterial internalization and translocation were assessed over a 24-hour period. Epithelial ultrastructure was assessed by transmission electron microscopy.

Epithelia under metabolic stress display decreased TER and increased numbers of pseudopodia that is consistent with increased internalization and translocation of the E. coli. Butyrate (but not acetate) significantly reduced the bacterial translocation across DNP-treated epithelia but did not ameliorate the drop in TER in the DNP+E. coli exposed monolayers. Inhibition of bacterial transcytosis across metabolically stressed epithelia was associated with reduced I-kappaB phosphorylation and hence NF-kappaB activation.

Reduced butyrate-producing bacteria could result in increased epithelial permeability particularly in the context of concomitant exposure to another stimulus that reduces mitochondria function. We speculate that prebiotics, the substrate for butyrate synthesis, is a valuable prophylaxis in the regulation of epithelial permeability and could be of benefit in preventing relapses in IBD.

Journal Article

Abstract  Diet-derived butyrate, a histone deacetylase inhibitor (HDI), decreases proliferation and increases apoptosis in colorectal cancer (CRC) cells via epigenetic changes in gene expression. Other HDIs such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) have similar effects. This study examined the role of microRNAs (miRNAs) in mediating the chemo-protective effects of HDIs, and explored functions of the oncogenic miR-17-92 cluster. The dysregulated miRNA expression observed in HT29 and HCT116 CRC cells could be epigenetically altered by butyrate, SAHA and TSA. These HDIs decreased expression of miR-17-92 cluster miRNAs (P < 0.05), with a corresponding increase in miR-17-92 target genes, including PTEN, BCL2L11, and CDKN1A (P < 0.05). The decrease in miR-17-92 expression may be partly responsible for the anti-proliferative effects of HDIs, with introduction of miR-17-92 cluster miRNA mimics reversing this effect and decreasing levels of PTEN, BCL2L11, and CDKN1A (P < 0.05). The growth effects of HDIs may be mediated by changes in miRNA activity, with down-regulation of the miR-17-92 cluster a plausible mechanism to explain some of the chemo-protective effects of HDIs. Of the miR-17-92 cluster miRNAs, miR-19a and miR-19b were primarily responsible for promoting proliferation, while miR-18a acted in opposition to other cluster members to decrease growth. NEDD9 and CDK19 were identified as novel miR-18a targets and were shown to be pro-proliferative genes, with RNA interference of their transcripts decreasing proliferation in CRC cells. This is the first study to identify competing roles for miR-17-92 cluster members, in the context of HDI-induced changes in CRC cells. © 2012 Wiley Periodicals, Inc.

Journal Article

Abstract  Two novel obligately anaerobic, Gram-stain-positive, saccharolytic and non-proteolytic spore-forming bacilli (strains CD3:22(T) and N1(T)) are described. Strain CD3:22(T) was isolated from a biopsy of the small intestine of a child with coeliac disease, and strain N1(T) from the saliva of a healthy young man. The cells of both strains were observed to be filamentous, approximately 5 to >20 µm long, some of them curving and with swellings. The novel organisms produced H(2)S, NH(3), butyric acid and acetic acid as major metabolic end products. Phylogenetic analyses, based on comparative 16S rRNA gene sequencing, revealed close relationships (98% sequence similarity) between the two isolates, as well as the type strain of Eubacterium saburreum and four other Lachnospiraceae bacterium-/E. saburreum-like organisms. This group of bacteria were clearly different from any of the 19 known genera in the family Lachnospiraceae. While Eubacterium species are reported to be non-spore-forming, reanalysis of E. saburreum CCUG 28089(T) confirmed that the bacterium is indeed able to form spores. Based on 16S rRNA gene sequencing, phenotypic and biochemical properties, strains CD3:22(T) and N1(T) represent novel species of a new and distinct genus, named Lachnoanaerobaculum gen. nov., in the family Lachnospiraceae [within the order Clostridiales, class Clostridia, phylum Firmicutes]. Strain CD3:22(T) (=CCUG 58757(T) =DSM 23576(T)) is the type strain of the type species, Lachnoanaerobaculum umeaense gen. nov., sp. nov., of the proposed new genus. Strain N1(T) (=CCUG 60305(T)=DSM 24553(T)) is the type strain of Lachnoanaerobaculum orale sp. nov. Moreover, Eubacterium saburreum is reclassified as Lachnoanaerobaculum saburreum comb. nov. (type strain CCUG 28089(T) =ATCC 33271(T) =CIP 105341(T) =DSM 3986(T) =JCM 11021(T) =VPI 11763(T)).

Journal Article

Abstract  BACKGROUND: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production.

RESULTS: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates.

CONCLUSION: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.

Journal Article

Abstract  The genes of CS-2 lipase and its cognate foldase were cloned from Pseudomonas aeruginosa CS-2. A stop codon was not found in the lipase gene. The amino acid sequence deduced from the lipase gene from P. aeruginosa CS-2 showed 97.8%, 71.3%, and 71.2% identity with lipases from P. aeruginosa LST-03, P seudomonas mendocina ymp, and Pseudomonas stutzeri A1501, respectively. The co-expression of CS-2 lipase and its cognate foldase of P. aeruginosa CS-2 in E scherichia coli BL21 (DE3) resulted in the formation of a soluble lipase. The recombinant lipase and foldase were purified to homogeneity using nickel affinity chromatography and about 10.2-fold with 40.9% recovery was achieved for the purification of the recombinant lipase. The molecular masses of the lipase and the foldase were estimated to be 35.7 and 38.3 kDa in SDS-PAGE, respectively. The recombinant lipase showed stability in the presence of some organic solvents. The recombinant CS-2 lipase was immobilized and subsequently used for the synthesis of butyl acetate in heptane. The conversion of substrate decreased from 98.2% to 87.4% after 5 cycles in reuse of the immobilized lipase.

Journal Article

Abstract  The present study investigated the enhanced radiosensitivity of U-251 cells induced by sodium butyrate (NaB) and its possible mechanisms. Increased radiosensitivity of U251 cells was examined by clonogenic cell survival assays. The expression of Ku70 mRNA and protein was detected by using RT-PCR and Western blotting respectively. γ-H2AX foci were measured at different time points after ionizing irradiation alone or combined with NaB treatment. The results showed that cell survival rate was significantly reduced, both D0 and Dq values were decreased (D0: 1.43 Gy vs. 1.76 Gy; Dq: 1.22 Gy vs. 2.05 Gy) after the combined treatment as compared with irradiation alone, and sensitivity enhancing ratio (SER) reached 1.23. The average number of γ-H2AX foci per cell receiving the combined treatment was significantly increased at different time points, and the expression levels of Ku70 mRNA and protein were suppressed by NaB in a dose-dependent manner. It was concluded that enhanced radiosensitivity induced by NaB involves an inhibited expression of Ku70 and an increase in γ-H2AX foci, which suggests decreased ability in DSB repair.

Journal Article

Abstract  The aim of the study was to determine the effect of dietary supplementation of organic acids on the performance, intestinal histomorphology, and blood biochemistry of broiler chicken. The birds in the control (T(1)) group were fed the basal diet whereas in other treatment groups basal diet was supplemented with 2% butyric acid (T(2)), 3% butyric acid (T(4)), 2% fumaric acid (T(4)), 3% fumaric acid (T(5)), 2% lactic acid (T(6)), and 3% lactic acid (T(7)). Broiler chicken fed diets supplemented with organic acids had significantly (P < .05) improved body weight gains and feed conversion ratio. No effect (P < .05) on cumulative feed consumption was observed. The addition of organic increased villus height in the small intestines but the differences were not significant (P < .05) in case of the ileum. Serum calcium and phosphorus concentrations were increased (P < .05) but no effect (P < .05) on the concentration of serum glucose and cholesterol, serum glutamic pyruvic transaminase (SGPT), and serum glutamic oxaloacetate transaminase (SGOT) was observed. The results indicated that the organic acid supplementation, irrespective of type and level of acid used, had a beneficial effect on the performance of broiler chicken.

WoS
Journal Article

Abstract  Aim of the study was to verify the effects of butyric acid glycerides, as a sulemental ingredient in the diet, on live performance of broiler chickens and on the morphology of their small intestine, since short chain fatty acids are known as selective protection factors against intestinal microbial parasites, potent growth promoters of the gut wall tissues, also in terms of immune modulation response. An experiment was carried out on 150 Ross 308 female chickens, allotted to 5 treatments, over a 35 days period: the control, with soybean oil as the energy supplement, and 4 treatments with increasing amounts (0.2, 0.35, 0.5, 1% mixed feed) of a mixture of butyric acid glycerides (mono-, di- and tri-glycerides). Treated animals showed a higher live weight at slaughtering (P<0.05) with a better feed conversion rate. The carcase characteristics were not influenced, but the small intestine wall resulted slightly modified with shorter villi, longer microvilli (P<0.01) and larger crypts depth in jejunum (P<0.01), only with lowest concentration of the supplement (0.2%). It is concluded that butyric acid glycerides are an efficient supplement to broilers' diets, deserving particular attention as a possible alternative to antimicrobial drugs, which have been banned in Europe.

Journal Article

Abstract  Iron accumulation in the brain has been associated to the pathogenesis of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in adult rats. Alterations in histone acetylation have been associated with memory deficits in models of neurological disorders. Here we examine histone acetylation in the brain and the effects of the histone deacetylase inhibitor (HDACi) sodium butyrate (NaB) on memory in the neonatal iron overload model in rats. Rats received vehicle or 30.0-mg/kg Fe⁺² orally at postnatal days 12-14. When animals reached adulthood, they were given training in either novel object recognition or inhibitory avoidance. Histone acetylation in the dorsal hippocampus and the effects of NaB were examined in separate sets of rats. Iron overload led to a reduction in H3 lysine 9 acetylation in the hippocampus, without affecting the acetylation of other H3 and H4 lysine residues. A single systemic injection of NaB (1.2 g/kg) immediately after training ameliorated iron-induced memory impairments. The results suggest that a reduction in H3K9 acetylation might play a role in iron-induced memory impairment and support the view that HDACis can rescue memory dysfunction in models of brain disorders.

Journal Article

Abstract  AIM: The effect of combining sodium butyrate (NaB), a histone deacetylase inhibitor, and 7-hydroxy-staurosporine (UCN-01) on cytotoxicity in human cervical carcinoma cells was evaluated.

MATERIALS AND METHODS: HeLa and CaSki cells were treated using NaB alone or in combination with staurosporine (STS) or its analog UCN-01. Cytotoxicity was determined by flow cytometry and morphological assays. Apoptotic pathways were characterized by Western blotting and immunostaining. CaSki cells were also xenografted into nude mice to assess the in vivo effects of NaB/UCN-01 combination.

RESULTS: Treatment with NaB and STS or UCN-01 resulted in enhanced apoptosis of cancer cells. Apoptosis involved mitochondrial pathways and overexpression of p53 and p73. In concordance, co-treatment modulated some p53/p73 downstream targets such as p21, BAX, BCL-2 and BCL-X(L), leading to increased caspase-3 and poly(ADP-ribose) polymerase cleavage. In vivo, NaB/UCN-01 combination exerted a substantial tumour growth suppression effect compared with single treatment.

CONCLUSION: UCN-01 was shown to be a potentiator of NaB therapy for cervical cancer cells.

Journal Article

Abstract  Sodium butyrate (NaB), a potent histone deacetylase inhibitor, induces cell cycle arrest and apoptosis in malignant cells. We investigated the effects on cellular proliferation in vitro when combining NaB with antineoplastic drugs commonly used to treat leukemias. Our results demonstrate that NaB increases the cytotoxic effects of cytarabine and etoposide, but not of bleomycin, doxorubicin, vincristine or methotrexate. These data suggest that NaB is a promising adjuvant therapeutic agent for the treatment of lymphoblastic leukemias, and provides a basis for further studies in this field.

DOI
Journal Article

Abstract  Microbial coinfection has great impact on the course of disease progression of HIV-1 and the development of AIDS-related deaths. In fact, progression of AIDS development is more rapid in individuals with concomitant infections. Although it is well known that immunosuppression due to HIV-1 infection leads to AIDS-associated opportunistic infections, it has also become apparent that opportunistic infection often promotes the disease progression of HIV-1 infection by enhancing viral transmission or replication, or by modulating host immune responses. We have focused on such microbial interaction between HIV-1 and butyrate- producing anaerobic bacteria and explored the effects of these bacterial culture supernatants containing butyric acid in upregulating HIV-1 gene expression and thus inducing viral replication from the latently infected cells. Since butyric acid inhibits histone deacetylases, these findings suggest that the HIV latency is maintained in 'recessive' chromatin, where histone proteins are largely deacetylated, and that concomitant infection of butyrate-producing bacteria could obviously be a risk factor for HIV-1 reactivation in infected individuals, and might contribute to AIDS progression. Moreover, it is possible that therapeutic elimination of such bacterial infection could conceivably prevent the clinical development of AIDS and its epidemiological transmission. Widespread epidemiological surveys are warranted in order to elucidate the role of concomitant infection of such bacteria.

Journal Article

Abstract  BACKGROUND: Comprehensive kinetic models of microbial metabolism can enhance the understanding of system dynamics and regulatory mechanisms, which is helpful in optimizing microbial production of industrial chemicals. Clostridium acetobutylicum produces solvents (acetone-butanol-ethanol, ABE) through the ABE pathway. To systematically assess the potential of increased production of solvents, kinetic modeling has been applied to analyze the dynamics of this pathway and make predictive simulations. Up to date, only one kinetic model for C. acetobutylicum supported by experiment has been reported as far as we know. But this model did not integrate the metabolic regulatory effects of transcriptional control and other complex factors. It also left out the information of some key intermediates (e.g. butyryl-phosphate).

RESULTS: We have developed an improved kinetic model featured with the incorporation of butyryl-phosphate, inclusion of net effects of complex metabolic regulations, and quantification of endogenous enzyme activity variations caused by these regulations. The simulation results of our model are more consistent with published experimental data than the previous model, especially in terms of reflecting the kinetics of butyryl-phosphate and butyrate. Through parameter perturbation analysis, it was found that butyrate kinase has large and positive influence on butanol production while CoA transferase has negative effect on butanol production, suggesting that butyrate kinase has more efficiency in converting butyrate to butanol than CoA transferase.

CONCLUSIONS: Our improved kinetic model of the ABE process has more capacity in approaching real circumstances, providing much more insight in the regulatory mechanisms and potential key points for optimization of solvent productions. Moreover, the modeling strategy can be extended to other biological processes.

Journal Article

Abstract  2,4,5-trimethyl-3-thiazoline (TMT), a component of fox feces, is a widely used odorant to induce innate fear behavior in rats and mice. However, based on the slight acrid smell it was argued that the observed behavioral effects are a result of the aversive and not of the fear-inducing properties of TMT. In the present study, we tried to directly compare the aversive and fear-inducing properties of TMT with those of the aversive control odor butyric acid. We first identified concentrations of butyric acid and TMT that induce similar amounts of avoidance behavior in rats, indicating that these concentrations have similar aversive properties. In a second experiment, these two concentrations were then tested for their ability to induce freezing, a species-specific defensive response. Only TMT but not butyric acid induced freezing in the rats. This supports the hypothesis that TMT indeed has specific fear-inducing properties and that the observed behavioral effects could not simply be reduced to the aversive properties of TMT.

DOI
Journal Article

Abstract  Our previous study has revealed that providing dry feeds increased the plasma concentration of antidiuretic hormone (ADH) in suckling calves, leading to altered water balance. To examine whether ketone bodies formed from ruminal fermentation-derived butyrate induced ADH secretion in suckling calves, the effects of intraruminal administration of butyrate on plasma concentration of ADH and ketone bodies, plasma and urine osmolality, and urine volume were examined. Six male Holstein calves aged 4 wk were used. Three levels of butyrate (0 g, 22 g and 44 g) were intraruminally administrated in a 3 x 3 Latin square design, and blood plasma and urine were analyzed. Plasma concentration of ketone bodies was increased by intraruminal administration of butyrate within 15 min in a dose-dependent manner, and the elevation of plasma levels continued until 4 h. Plasma concentration of ADH was also increased by the butyrate treatment, and it was higher in the 44 g butyrate group than in the 22 g butyrate group from 15 min to 2 h. The duration of the elevated plasma concentration of ADH was shorter than that of plasma concentration of ketone bodies. The relationship between plasma concentrations of ADH and those of ketone bodies was statistically significant, although the relationship was weaker. In accordance with the elevation of plasma ADH levels, the butyrate treatment resulted in the decreases in urine volume and increases in urine osmolality. Plasma osmolality was not different among the groups. The present results suggest that ruminal butyrate-derived ketone bodies are at least partly responsible for ADH secretion in suckling calves fed with dry feeds, and that the secreted ADH decreases urine volume through the increase in urine osmolality. (c) 2006 Elsevier B.V. All rights reserved.

  • <<
  • 1 of 29
  • >>
Filter Results