Nanoscale Silver

Project ID

1457

Category

Other

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  Nanotechnology is expected to open new avenues to fight and prevent disease using atomic scale tailoring of materials. Among the most promising nanomaterials with antibacterial properties are metallic nanoparticles, which exhibit increased chemical activity due to their large surface to volume ratios and crystallographic surface structure. The study of bactericidal nanomaterials is particularly timely considering the recent increase of new resistant strains of bacteria to the most potent antibiotics. This has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work studies the effect of silver nanoparticles in the range of 1-100 nm on Gram-negative bacteria using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). Our results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of [?]1-10 nm.

Journal Article

Abstract  In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag+ (in the form of AgNO3). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.

Journal Article

Abstract  The antimicrobial activity of silver nanoparticles against E. coli was investigated as a model for Gram-negative bacteria. Bacteriological tests were performed in Luria?Bertani (LB) medium on solid agar plates and in liquid systems supplemented with different concentrations of nanosized silver particles. These particles were shown to be an effective bactericide. Scanning and transmission electron microscopy (SEM and TEM) were used to study the biocidal action of this nanoscale material. The results confirmed that the treated E. coli cells were damaged, showing formation of ?pits? in the cell wall of the bacteria, while the silver nanoparticles were found to accumulate in the bacterial membrane. A membrane with such a morphology exhibits a significant increase in permeability, resulting in death of the cell. These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

Technical Report

Abstract  The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described here. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies.

Journal Article

Abstract  Due to their small size, nanoparticles have distinct properties compared with the bulk form of the same materials. These properties are rapidly revolutionizing many areas of medicine and technology. Despite the remarkable speed of development of nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and presentation of the proteins on the surface of the particles leads to an in vivo response. Proteins compete for the nanoparticle "surface," leading to a protein "corona" that largely defines the biological identity of the particle. Thus, knowledge of rates, affinities, and stoichiometries of protein association with, and dissociation from, nanoparticles is important for understanding the nature of the particle surface seen by the functional machinery of cells. Here we develop approaches to study these parameters and apply them to plasma and simple model systems, albumin and fibrinogen. A series of copolymer nanoparticles are used with variation of size and composition (hydrophobicity). We show that isothermal titration calorimetry is suitable for studying the affinity and stoichiometry of protein binding to nanoparticles. We determine the rates of protein association and dissociation using surface plasmon resonance technology with nanoparticles that are thiol-linked to gold, and through size exclusion chromatography of protein-nanoparticle mixtures. This method is less perturbing than centrifugation, and is developed into a systematic methodology to isolate nanoparticle-associated proteins. The kinetic and equilibrium binding properties depend on protein identity as well as particle surface characteristics and size.

Journal Article

Abstract  The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of Ag nanoparticles on microorganisms and antimicrobial mechanism have not been revealed clearly. Stable Ag nanoparticles were prepared and their shape and size distribution characterized by particle characterizer and transmission electron microscopic study. The antimicrobial activity of Ag nanoparticles was investigated against yeast, Escherichia coli, and Staphylococcus aureus. In these tests, Muller Hinton agar plates were used and Ag nanoparticles of various concentrations were supplemented in liquid systems. As results, yeast and E. coli were inhibited at the low concentration of Ag nanoparticles, whereas the growth-inhibitory effects on S. aureus were mild. The free-radical generation effect of Ag nanoparticles on microbial growth inhibition was investigated by electron spin resonance spectroscopy. These results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.

Data & Software

Abstract  This model calculates the deposition and clearance of monodisperse and polydisperse aerosols in the respiratory tract of rats, human adults and children (deposition only) for particles ranging from ultrafine (0.01 microns) to coarse (20 microns) sizes. The models are based upon single-path and multiple-path methods for tracking air flow and calculating aerosol deposition in the lung. The single-path method calculates deposition in a typical path per airway generation, while the multiple-path method calculates particle deposition in all airways of the lung and provides lobar-specific and airway-specific information. Within each airway, deposition is calculated using theoretically derived efficiencies for deposition by diffusion, sedimentation and impaction within the airway or airway bifurcation. Filtration of aerosols by the head (nose and mouth) is determined using empirical efficiency functions.

Journal Article

Abstract  BACKGROUND: Contaminated surfaces can act as a reservoir for pathogenic microorganisms and potentially exacerbate the risk of infection. Surface disinfection and decontamination provide temporary amelioration against bacterial colonization. Disinfected surfaces eventually become contaminated, thus, mitigating the benefit of the initial disinfection. It is hypothesized that to improve on the current state of the art, a disinfectant should not only immediately disinfect a surface but also provide persistent antimicrobial action after the product has been applied. We describe here a silver-based disinfectant technology designed to provide long-lasting sanitization and disinfection to treated surfaces as evaluated on hard surfaces after repeated environmental insults. METHODS: A comparative evaluation of 6 disinfectant formulations for residual antimicrobial activity after water rinsing was performed. Log reduction of bacterial populations on disinfectant-treated substrates were measured after 30 minutes to 8 hours of exposure and compared with an untreated control. In a similar study, the residual antimicrobial activity of a silver disinfectant was evaluated against antibiotic- and biocide-resistant bacteria also after water rinsing. Further, residual antimicrobial activity of the silver disinfectant was measured after 5 cycles of rinsing, abrasion, and contamination against representative household and nosocomial pathogens (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter aerogenes, Enterococcus faecium, or Salmonella choleraesuis) after 10-minute exposure times. RESULTS: In the comparative assay, only the silver disinfectant and a persistent quaternary ammonium compound disinfectant demonstrated significant residual activity (> or =3.0 log(10) reduction to control) against S aureus whereas only the silver disinfectant demonstrated activity against Pseudomonas. No residual activity (< or = 0.5 log reduction to untreated control) was observed for the other disinfectant products. The silver-based disinfectant also showed significant and equivalent efficacy against antibiotic- and silver-resistant bacteria. In addition, the silver disinfectant was able to achieve significant residual activity in 10 minutes against all organisms tested after 1, 3, and 5 cycles of water rinse, abrasion, and microbial contamination. CONCLUSIONS: The findings show the ability of a new silver-based disinfectant to reduce bacterial populations that contact treated surfaces within minutes, highlight the potential to interrupt cross-contamination from environmental surfaces, and reduce the risk of infection within the home and health care settings.

DOI
Journal Article

Abstract  Every cell has a silver lining! The toxicity of Ag nanoparticles is investigated using a panel of recombinant bioluminescent bacteria. The presence of the nanoparticles leads to the production of a superoxide radical (see figure). Furthermore, the Ag nanoparticles damage the cellular membranes, causing a disruption in the ion efflux system. Thus, the cells cannot effectively extrude the Ag ions and, hence, Ag nanoparticles cause more damage than do Ag ions.

DOI
Journal Article

Abstract  The increasing use of nanomaterials in consumer products has led to increased concerns about their potential environmental and health impacts. To better understand the transport, fate, and behavior of nanoparticles in aquatic systems, it is essential to understand their interactions with different components of natural waters including natural organic matter over a broad range of physicochemical conditions. Fluorescence correlation spectroscopy was used to determine the diffusion coefficients of TiO2 nanoparticles having a nominal size of 5 nm. The effects of a various concentrations of the Suwannee River Fulvic Acid (SRFA) and the roles of pH and ionic strength were evaluated. Aggregation of the bare TiO2 nanoparticles increased for pH values near the zero point of charge. At any given pH, an increase in ionic strength generally resulted in increased aggregation. Furthermore, conditions which favored adsorption of the SRFA resulted in less aggregation of the TiO2 nanoparticles, presumably due to increased steric repulsion. Under the conditions studied here, nanoparticle dispersions were often stable for environmentally relevant conditions of SRFA, pH, and ionic strength, suggesting that in the natural environment, TiO2 dispersion might occur to a greater extent than expected.

Journal Article

Abstract  Metals play a vital role in human, animal and plant physiology, and important research, past and ongoing, is directed towards exploring the interrelated mechanisms that govern their penetration through skin. Much insight has been gained through these efforts, but our understanding of the process is still incomplete, mainly due to the failure to allow for the effects of chemical speciation of metallic elements, especially the transition metals. Also, the skin as target organ presents imponderable and wide margins of variability. In vivo permeability is subject to homeostasis regulating the overall organism; in vitro, the sections of skin used for diffusion experiments are likely to present artifacts. Endeavors to define rules governing skin penetration to give predictive quantitative structure–diffusion relationships for metallic elements for risk assessment purposes have been unsuccessful, and penetration of the skin still needs to be determined separately for each metal species, either by in vitro or in vivo assays. Phenomena observed by us and other investigators, which appear to determine the process of skin permeation for a number of metals, are reviewed, separating the exogenous factors from the characteristics of the skin or other endogenous factors.

Journal Article

Abstract  There is a growing interest on nanoparticle safety for topical use. The benefits of nanoparticles have been shown in several scientific fields, but little is known about their potential to penetrate the skin. This study aims at evaluating in vitro skin penetration of silver nanoparticles. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. Physiological solution was used as receiving phase and 70 microg/cm2 of silver nanoparticles coated with polyvinylpirrolidone dispersed in synthetic sweat were applied as donor phase to the outer surface of the skin for 24h. The receptor fluid measurements were performed by electro thermal atomic absorption spectroscopy (ETAAS). Human skin penetration was also determined by using transmission electron microscope (TEM) to verify the location of silver nanoparticles in exposed membranes. Median silver concentrations of 0.46 ng cm(-2) (range

Archival Material

Abstract  This Dredging Operations and Engineering Research (DOER) Technical Note (TN) is a tutorial with examples of the PTM, developed jointly by the Coastal Inlets Research Program (CIRP) and DOER Program. This note is applicable to Version 1.0 of PTM. Demirbilek et al. (2005a) describe the PTM interface, and an overview of features and capabilities of the PTM is presented in Demirbilek et al. (2005b). The theoretical formulation and implementation of the PTM are given in a technical report (MacDonald and Davies, in preparation). The PTM is a Lagrangian particle-tracking model that is part of the U.S. Army Corps of Engineers (USACE) Surface Water Modeling System, SMS (Zundel 2005, Zundel et al. 1998). It employs a Lagrangian method of tracking particle pathways to estimate migration of sediment particles as influenced by waves and currents. For its input, the PTM requires a geometric surface defining the bottom elevation (depth) over which water level, current velocity vectors, and waves are available at each point in the modeling domain. The user specifies sediment sources and model parameters to perform a PTM simulation within the SMS for a given set of hydrodynamic input (waves, water levels, and currents). The SMS includes commands for layout of the sediment sources, specification of the numerical parameters, and management of the Eulerian quantities (water depth, surface elevation, current velocity).

Journal Article

Abstract  Nanoparticles from the rapidly increasing number of consumer products that contain manufactured nanomaterials are being discharged into waste streams. Increasing evidence suggests that several classes of nanomaterials may accumulate in sludge derived from wastewater treatment and ultimately in soil following land application as biosolids. Little research has been conducted to evaluate the impact of nanoparticles on terrestrial ecosystems, despite the fact that land application of biosolids from wastewater treatment will be a major pathway for the introduction of manufactured nanomaterials to the environment. To begin addressing this knowledge gap, we used the model organisms Nicotiana tabacum L. cv Xanthi and Manduca sexta (tobacco hornworm) to investigate plant uptake and the potential for trophic transfer of 5, 10, and 15 nm diameter gold (Au) nanoparticles (NPs). Samples were analyzed using both bulk analysis by inductively coupled plasma mass spectrometry (ICP-MS) as well as spatially resolved methods such as laser ablation inductively coupled mass spectrometry (LA-ICP-MS) and X-ray fluorescence (μXRF). Our results demonstrate trophic transfer and biomagnification of gold nanoparticles from a primary producer to a primary consumer by mean factors of 6.2, 11.6, and 9.6 for the 5, 10, and 15 nm treatments, respectively. This result has important implications for risks associated with nanotechnology, including the potential for human exposure.

Journal Article

Abstract  The purpose of this study was to investigate the effect of surface coating on the toxicity of silver nanoparticles (Ag NPs) soil. Earthworms (Eisenia fetida) were exposed to AgNO(3) and Ag NPs with similar size ranges coated with either polyvinylpyrrolidone (hydrophilic) or oleic acid (amphiphilic) during a standard sub-chronic reproduction toxicity test. No significant effects on growth or mortality were observed within any of the test treatments. Significant decreases in reproduction were seen in earthworms exposed to AgNO3, (94.21 mg kg(-1)) as well as earthworms exposed to Ag NPs with either coating (727.6 mg kg(-1) for oleic acid and 773.3 mg kg(-1) for polyvinylpyrrolidone). The concentrations of Ag NPs at which effects were observed are much higher than predicted concentrations of Ag NPs in sewage sludge amended soils; however, the concentrations at which adverse effects of AgNO(3) were observed are similar to the highest concentrations of Ag presently observed in sewage sludge in the United States. Earthworms accumulated Ag in a concentration-dependent manner from all Ag sources, with more Ag accumulating in tissues from AgNO(3) compared to earthorms exposed to equivalent concentrations of Ag NPs. No differences were observed in Ag accumulation or toxicity between earthworms exposed to Ag NPs with polyvinylpyrrolidone or oleic acid coatings.

DOI
Journal Article

Abstract  The cell envelope of Gram-negative bacteria is composed of two membranes, which are separated by the peptidoglycan-containing periplasm. Whereas the envelope forms an essential barrier against harmful substances, it is nevertheless a compartment of intense traffic for large proteins such as enzymes and toxins. Numerous studies dealing with the molecular mechanism of protein secretion have revealed that Gram-negative bacteria evolved different strategies to achieve this process. Among them, the type II secretion mechanism is part of a two-step process. Exoproteins following this pathway are synthesized as signal peptide-containing precursors. After cleavage of the signal peptide, the mature exoproteins are released into the periplasm, where they fold. The type II machinery, also known as the secreton, is responsible for the translocation of the periplasmic intermediates across the OM. The type II system is broadly conserved in Gram-negative bacteria and involves a set of 12–16 different proteins named GspC-M, GspAB, GspN, GspO, and GspS. The type II secretion system is highly reminiscent of the type IV piliation assembly system. Based on findings about the subcellular localisation of the Gsp components, protein–protein interactions between Gsps and their multimerisation status, structural data and electron microscopy observation, it could be proposed a working model that strikingly runs both systems in parallel.

DOI
Journal Article

Abstract  An elementary step towards a quantitative assessment of the risks of new compounds or pollutants (chemicals, materials) to the environment is to estimate their environmental concentrations. Thus, the calculation of predicted environmental concentrations (PECs) builds the basis of a first exposure assessment. This paper presents a probabilistic method to compute distributions of PECs by means of a stochastic stationary substance/material flow modeling. The evolved model is basically applicable to any substance with a distinct lack of data concerning environmental fate, exposure, emission and transmission characteristics. The model input parameters and variables consider production, application quantities and fate of the compounds in natural and technical environments. To cope with uncertainties concerning the estimation of the model parameters (e.g. transfer and partitioning coefficients, emission factors) as well as uncertainties about the exposure causal mechanisms (e.g. level of compound production and application) themselves, we utilized and combined sensitivity and uncertainty analysis, Monte Carlo simulation and Markov Chain Monte Carlo modeling. The combination of these methods is appropriate to calculate realistic PECs when facing a lack of data. The proposed model is programmed and carried out with the computational tool R and implemented and validated with data for an exemplary case study of flows of the engineered nanoparticle nano-TiO2 in Switzerland.

  • <<
  • 4 of 22
  • >>
Filter Results