Diethyl phthalate (DEP)

Project ID

1097

Category

IRIS

Added on

Jan. 7, 2010, 11:28 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Due to its biodegradability and renewability, a great interest has been devoted to investigating cellulose acetate in order to expand its potential applications. In addition, secondary cellulose acetate (CDA) could also be considered as a model system for strongly polar polymer system. The dynamical behavior of CDA is supposed to be governed by H-bonding and dipolar interaction network. Due to their high glass transition temperature, cellulose acetate-based systems are processed when blended with plasticizers. It is thus of utmost importance to study the miscibility and plasticizing effects of various molecules. We prepared CDA films via solvent casting method with diethyl phthalate as the plasticizer. Miscibility diagrams were established by calorimetry and thermo-mechanical (DMTA) experiments. Dynamical properties were analyzed by DMTA and broadband dielectric spectroscopy. We could identify the α-relaxation of these CDA-plasticizer systems in the frequency range from 0.06 Hz to 10(6)Hz, which allowed for describing the dynamics in the so-called Williams-Landel-Ferry/Vogel-Fulcher-Tammann regime.

Journal Article

Abstract  Phthalate esters have been known as potent endocrine disruptors and carcinogens; and their removal from water have been of considerable concern recently. In the present study, γ-cyclodextrin polyurethane polymer (GPP), γ-cyclodextrin/starch polyurethane copolymer (GSP), and starch polyurethane polymer (SPP) have been synthesized and characterized. Their adsorption efficiencies for the removal of dimethyl phthalate (DMP) and diethyl phthalate (DEP) from aqueous solutions were investigated. The characterization results showed the success of the synthesis. The isotherms were L-type, and both the Langmuir and Freundlich adsorption isotherm gave good fittings to the adsorption data. Adsorption mechanisms suggested that these adsorbents spontaneously adsorb phthalate molecules driven mainly by enthalpy change, and the adsorption process was attributed to multiple adsorbent-adsorbate interactions such as hydrogen bonding, π-π stacking, and pore filling. The results showed that starch and γ-cyclodextrin polyurethane polymer adsorbents have excellent potential as adsorbent materials for the removal of phthalates from the contaminated water.

Journal Article

Abstract  Phthalate esters are a group of plasticizers, which have been widely detected in China's agricultural and industrial soils. In this study, batch adsorption experiments were conducted to investigate the environmental effects on the adsorption of diethyl phthalate ester (DEP) to clay minerals. The results showed that DEP adsorption isotherms were well fitted with the Freundlich model; the interlayer spacing of K(+) saturated montmorillonite (K-mont) was the most important adsorption area for DEP, and di-n-butyl ester (DnBP) was limited to intercalate into the interlayer of K-mont due to the bigger molecular size; there was no significant effect of pH and ionic strength on DEP adsorption to K-mont/Ca-mont, but to Na-mont clay. The adsorption to kaolinite was very limited. Data of X-ray diffraction and FTIR spectra further proved that DEP molecules could intercalate into K-/Ca-mont interlayer, and might interact with clay through H-bonding between carbonyl groups and clay adsorbed water. Coated humic acid on clay surface would enhance DEP adsorption at low concentration, but not at high concentration (eg. Ce>0.26 mM). The calculated adsorption enthalpy (ΔHobs) and adsorption isotherms at varied temperatures showed that DEP could be adsorbed easier as more adsorbed. This study implied that clay type, compound structure, exchangeable cation, soil organic matter and temperature played important roles in phthalate ester's transport in soil.

DOI
Journal Article

Abstract  In this work, the reactions of (OH)-O-a (TM), e (aq) (-) , and SO (4) (a (TM) a') with diethyl phthalate (DEP) were investigated in aqueous solution by pulse radiolysis, and degradation efficiencies of DEP with (OH)-O-a (TM) and e (aq) (-) were evaluated in water using steady-state radiolysis as well. The absolute rate constants of (OH)-O-a (TM), e (aq) (-) , and SO (4) (a (TM) a') with DEP were determined as 2.3 x 10(9), 1.0 x 10(10), and 1.0 x 10(8) M-1 s(-1), respectively. The degradation efficiencies for the (OH)-O-a (TM) and e (aq) (-) reactions were 81 and 33 %, respectively. Transient absorption spectra were observed for the intermediate radicals produced by (OH)-O-a (TM), e (aq) (-) , and SO (4) (a (TM) a') reactions. The results suggested that e (aq) (-) transferred to the ester group, resulting in the formation of DEP radical anions. In contrast, (OH)-O-a (TM) and SO (4) (a (TM) a') added predominantly to the aromatic ring of DEP, forming the corresponding (OH)-O-a (TM) adducts. The fundamental mechanistic parameters and degradation efficiencies derived from these results were significant for evaluations and applications of advanced oxidation processes.

DOI
Journal Article

Abstract  Concerns over the threats posed by a large number of molecules, collectively termed as endocrine disrupting compounds (EDCs) and generally known to alter and disrupt hormone systems and physiological functions, have often been expressed in academic and scholarly debates. From the perspective of classical toxicology, EDCs have genomic mechanisms of actions and exert agonistic or antagonistic effects on steroid receptors. They are also able to alter reproductive function by binding to estrogen or androgen receptors, and the neuroendocrine system by binding to the thyroid receptor. Recently, EDCs have been shown to have equally complex nongenomic mechanisms, altering steroid synthesis or steroid metabolism. As environmental contaminants, these molecules proved disruptively harmful for many wildlife species, particularly those from or depending on the aquatic ecosystem. An increasingly growing body of research has voiced further concerns that human populations are not immune from the dangers of EDCs. Studies from this line of research caution that EDCs can alter hormonal balance and that a whole range of breast and prostate cancers, endometriosis, cryptorchidism, and hypospadias have been linked to exposure to EDCs. This particular area has raised a lot of controversy and the literature on this subject often presents opposing, and sometimes conflicting, perceptions and perspectives. Accordingly, the authors aimed to contribute to the committed academic search for better appreciation of the topic. They first discuss the major natural and synthetic chemicals with endocrine disrupting properties to which humans and wildlife may be exposed. They then describe the key endocrine mechanisms of action and conclude by addressing the main observed effects in human and wildlife populations.

DOI
Journal Article

Abstract  The distribution of water-soluble (triethyl citrate and triacetin) and water-insoluble (acetyltriethyl citrate, acetyltributyl citrate, dibutyl phthalate, dibutyl sebacate, diethyl phthalate and tributyl citrate) plasticizers between the aqueous and polymer phases in an aqueous colloidal ethylcellulose dispersion, Aquacoat(R), was determined. A separation scheme was developed, which allowed the determination of the amounts of plasticizers dissolved and, in the case of water-insoluble plasticizers, also emulsified in the aqueous phase, and dissolved in the colloidal polymer particles. The plasticized ethylcellulose dispersion was separated by centrifugation and/or ultracentrifugation to obtain the various plasticizer-containing fractions. The plasticizer concentration in each phase was determined by a HPLC assay. The extent of the plasticizer partitioning was investigated with respect to the type (water-soluble or water-insoluble) and concentration of the plasticizer, and the solids content of the polymer dispersion. Water-insoluble plasticizers mainly partitioned into the polymer particles due to the higher affinity towards the polymer phase, however, the amount of emulsified plasticizer droplets increased with increasing plasticizer concentration after a plasticization time of 24 h. An 'association' coefficient, which was obtained from the ratio of the plasticizer concentration in the polymer to the concentration in the aqueous phase, was used to characterize the plasticizer partitioning. The fraction of plasticizer taken up by the colloidal polymer particles increased with increasing solids content of the polymer dispersion. It is therefore recommended to add the plasticizer to the undiluted dispersions followed by dilution to the desired solids content just prior to coating, rather than first diluting the dispersion followed by addition of the plasticizer.

DOI
Journal Article

Abstract  Ethyl cellulose films plasticized with 0, 10 and 20% of five different plasticizers were prepared. The films were cast into teflon molds from ethanol solution. The plasticizers used were: dibutyl sebacate, triethyl citrate, triacetin, Myvacet(R) (acetylated monoglycerides) and diethyl phthalate. The physical properties of the films were evaluated using thermal analysis, tensile testing, porosimetry, scanning electron microscopy and hot stage microscopy. The results reported are glass transition temperature, tensile stress, percentage elongation at break, elastic modulus, total volume of pores, total surface area of pores and mean and median diameters of pores. On the basis of tensile tests and thermal analysis, dibutyl sebacate and Myvacet(R) were found to be the two most efficient plasticizers for ethyl cellulose films cast from ethanol solution.

Journal Article

Abstract  A disintegrin and metalloproteinase domain 33 (ADAM33) gene is a transmembrane glycoprotein that mediates changes in cell adhesion and plays an important role in cancer progression. Since bisphenol A (BPA) and phthalates are epigenetically toxic, the purpose of this study was to examine whether BPA and phthalate metabolites, including monoethyl phthalate (MEP), mono‑n‑butyl phthalate (MBP), mono‑isobutyl phthalate (MIBP), mono(2‑ethylhexyl) phthalate (MEHP), mono(2‑ethyl‑5‑hydroxyhexyl) phthalate (MEHHP), mono(2‑ethyl‑5‑carboxypentyl) phthalate (MECPP), and mono(2‑ethyl‑5‑oxohexyl) phthalate (MEOHP), have an epigenetic impact on ADAM33 and the incidence of breast cancer. CpG islands of breast cancer microarray datasets obtained from the Gene Expression Omnibus (GEO) were used to assess the ADAM33 methylation profile. We designed a case‑control study including 44 cases and 22 age‑matched controls to detect the methylation status of intron 1 in ADAM33 from peripheral blood mononuclear cells (PBMCs) in blood, using BSP, nested PCR, and bisulfite sequencing, and measured the in vivo gene expression of ADAM33 and the urinary concentrations of endocrine‑disrupting chemicals (EDCs), using real‑time PCR, high‑performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC‑MS). Only one dataset, GSE32393, reached significance (P=0.016). ADAM33 expression and methylation frequencies at CpG site 3 in intron 1 were higher in the control group. We found a positive association between intron 1 methylation level and ADAM33 expression as well as urinary concentrations of MEHHP, MECPP, MEOHP and Σ4MEHP (the sum of MEHP, MECPP, MEHHP, and MEOHP) in the cases. This study suggests that metabolites of phthalate such as MEHHP, MECPP, MEOHP and Σ4MEHP may increase the intron 1 methylation level to elevate ADAM33 gene expression and have a protective effect on reducing the risk of breast cancer.

Journal Article

Abstract  Endocrine-disrupting chemicals, such as phthalates, are an unexamined potential risk factor for bacterial vaginosis (BV) and warrant investigation because hormones affect BV. We examined the association between phthalate exposure and BV in the National Health and Nutrition Examination Survey, 2001-2004. BV outcomes were defined as intermediate (Nugent score of 4-6) and positive (7-10). Phthalate metabolites, including monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), and di(2-ethylhexyl) phthalate (DEHP) metabolites, were measured in urine. Among 854 women with complete data, multinomial logistic regression revealed that concentrations of MnBP (Q4 vs. Q1 OR = 3.01, 95% CI 1.76-5.15, p-trend<0.001) and ΣDEHP metabolites (Q4 OR = 2.55, 95% CI 1.45-4.47, p-trend = 0.03) were associated with Nugent-score BV, although only MnBP was significant after adjustment for confounders. Associations were null after adjustment for urinary creatinine (MnBP Q4 OR = 1.11, 95% CI 0.63-1.96; ΣDEHP Q4 OR = 0.72, 95% CI 0.37-1.39). Future work should further examine these relationships using direct measurements of intravaginal phthalates exposures.

Journal Article

Abstract  Citrate esters have been considered as alternatives to phthalate plasticizers. Being considered to have low toxicity in mammals, their toxicological information for aquatic animals remains poorly understood. We examined the developmental toxicity of citrate esters including tributyl O-acetylcitrate (ATBC), triethyl 2-acetylcitrate (ATEC), and trihexyl O-acetylcitrate (ATHC) together with dibutyl phthalate (DBP) based on the frog embryo teratogenesis assay-Xenopus (FETAX). ATBC has the lowest 96 h LC50 and 96 h EC50 values. In RT-qPCR, the ratio of bax and bcl-2 mRNA was significantly increased by DBP, but not by ATBC, ATEC and ATHC. DNA fragmentation was obvious in DBP-treated tadpoles, but not in those treated with ATBC and ATEC, whereas ATHC caused necrotic DNA degradation. Lipid hydroperoxide levels in tadpoles were significantly increased by DBP and ATHC, but not by ATBC and ATEC, suggesting that induction of oxidative stress by DBP and ATHC in embryos. In tadpoles with head abnormalities, basihyal bone, ceratohyal bone and Meckel's cartilage were frequently missed together with reduction in branchial gill bones. Col2a1 mRNA in the head of tadpoles was significantly decreased by low concentration of DBP, ATHC, and high concentration of ATEC. In stage 25 embryos FoxN3 mRNA, a master regulator for differentiation of neural crest cells to chondrocytes in head, was significantly decreased by DBP and ATHC, but not by ATBC and ATEC. In conclusion, ATEC was recommended as the alternative to phthalate plasticizer having the lowest developmental toxicity in amphibian embryos.

Journal Article

Abstract  Biomass derived biochar is a stable carbon-rich product with potential for soil amendment. Introduced into the natural environment, biochar will naturally experience 'ageing' processes that are liable to change its physicochemical properties and the mobility of sorbed pollutants over the longer term. To elucidate the reciprocal effects of biochar ageing and heavy metal adsorption on the affinity of biochar for organic pollutants, we systematically assessed the adsorption of diethyl phthalate (DEP), representative of phthalic acid esters (PAEs), to fresh and aged biochars with and without coexistence of Cd2+. Long-term oxidative ageing was simulated using 5% H2O2 and applied to biochar samples made from corn cob, maize straw and wheat straw made by pyrolysis at both 450 °C and 650 °C. Our results showed that biochar made at lower temperature (450 °C) and from straw exhibited the higher adsorption capacity, owing to their greater polarity and abundance of O-containing functional groups. The adsorption of DEP onto fresh biochars was found to be driven by van der Waals force and H-bonding. Biochar made at the higher temperature (650 °C) displayed higher carbon stability than that produced at lower pyrolysis temperature. Oxidized biochar showed lower adsorption capacity than fresh biochar owing to the formation of three-dimensional water clusters on biochar surface, which blocked accessible sites and decreased the H-bonding effect between DEP and biochars. The coexistence of Cd2+ suppressed the sorption of DEP, via competition for the same electron-rich sites. This indicates that cation/π-π EDA interactions are the primary mechanism for PAE and Cd2+ stabilization on biochar. Our study sheds light on the mechanism of organic pollutant sorption by biochar, as well as the potential susceptibilities of this sorption to ageing effects in the natural environment.

Journal Article

Abstract  Polyaniline (pANI) was pyrolyzed under a nitrogen atmosphere to get porous pANI-derived carbons (PDCs). To increase the porosity of the carbons further, the PDCs were activated at 600-800 °C in the presence of KOH. The obtained PDCs were firstly applied in liquid-phase adsorptions in order to remove hazardous organics from both water and fuel effectively via adsorption. PDC-700, activated at 700 °C, showed record high adsorption capacities from water for the removal of hazardous organics such as diethyl phthalate and Janus Green B, as representative organics for industrial chemicals (endocrine disturbing agent) and organic dyes, respectively. Moreover, PDC-700 had record high adsorption capacity for the removal of 4,6-dimethyldibenzothiophene from a model fuel. The plausible mechanisms were also suggested to explain the remarkable adsorptions both from water and fuel. The adsorbents could be regenerated in a facile way and reused in adsorption up to several cycles. Therefore, the PDCs could be suggested as a new class of adsorbents for the purification of both water contaminated with organics and fuel having a high concentration of thiophenics.

Journal Article

Abstract  In recent years, biochar has been extensively studied as a sorbent for immobilizing contaminants and minimizing their bioavailability in soils. Few studies have been conducted to evaluate the interactions between biochar and compost in soils and their impact on degradation of organic contaminants. In the present study, soils with high organic carbon content (HOC) and low organic carbon content (LOC) were spiked with 100mg·kg-1 di-(2-ethylhexyl) phthalate (DEHP) amended with biochar derived from dead pigs, bamboo, and composted sheep manure. The soils were thereafter incubated for 112days at 25°C and periodically sampled for monitoring DEHP concentrations. Degradation of DEHP was described by a logistic model. Results showed that the initial degradation rates were slow, but accelerated after 14days of incubation. The DEHP degradation rates were higher in the HOC soils than in the LOC soils over the incubation period. The half-lives of DEHP were shorter in the LOC soils treated with pig biochar, and bamboo/pig biochar plus compost than in the untreated soil. However, there was no significant difference in the half-lives of DEHP in the HOC control and treated soils. The differential effects of soil amendments on DEHP degradation between LOC and HOC soils could be explained by the properties of the organic amendments, soil pH and the organic carbon contents of the soils.

Journal Article

Abstract  In the current study, a novel magnetic solid phase extraction (MSPE) technique combined with a gas chromatography/mass spectroscopy (GC/MS) was developed to determine the phthalate ester content of bottled Doogh samples. Doogh is a yogurt-based drinking beverage, which is frequently consumed in Middle East and Balkans. It is produced by stirring yogurt in Chern separation machine and consists of substances such as water, yogurt, and salt in addition to aqueous extracts of native herbs. The magnetic multi-walled carbon nanotubes (MWCNT-Fe3O4) were used as adsorbents of phthalate acid esters (PAEs) due to a superior adsorption capability of hydrophobic compounds. In this context, the quantity of the extractable migrated phthalate esters (dibutyl phthalate (DBP), dimethyl phthalate (DMP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), di-N-octyl phthalate (DNOP), and bis (2-ethylhexyl) phthalate (DEHP)) from polyethylene terephthalate (PET) bottles into Doogh samples was measured. The correlation between the concentration of migrated PAEs and some factors such as the type of Doogh (gaseous and without gas), difference in brand (five brands), volume (1500 and 300 mL), and the storage time also was investigated. The migration level into Doogh samples was increased by incorporating of gas as well as increasing the volume of PET bottles. Also, with elaborating of storage time, the migration of some phthalates such as DEHP (the mean from 2419.85 ng L-1 in the first week to 2716.15 ng L-1 in the second month), DEP, and total phthalate was increased. However, no significant difference in concentrations of migrated phthalate esters among different examined brands was noted. Finally, the concentration of migrated PAEs from bottle into all the examined Doogh samples was below the defined standards by EPA; 6 μg/L for DEHP in drinking water. Graphical abstract ᅟ.

Journal Article

Abstract  BACKGROUND: Rheumatism represents any disease condition marked with inflammation and pain in the joints, muscles, or connective tissues. Many traditional Chinese drugs have been used for a long time to treat rheumatism. However, a comprehensive information source for these drugs is still missing, and their anti-rheumatism mechanisms remain unclear. An ontology for anti-rheumatism traditional Chinese drugs would strongly support the representation, analysis, and understanding of these drugs.

RESULTS: In this study, we first systematically collected reported information about 26 traditional Chinese decoction pieces drugs, including their chemical ingredients and adverse events (AEs). By mostly reusing terms from existing ontologies (e.g., TCMDPO for traditional Chinese medicines, NCBITaxon for taxonomy, ChEBI for chemical elements, and OAE for adverse events) and making semantic axioms linking different entities, we developed the Ontology of Chinese Medicine for Rheumatism (OCMR) that includes over 3000 class terms. Our OCMR analysis found that these 26 traditional Chinese decoction pieces are made from anatomic entities (e.g., root and stem) from 3 Bilateria animals and 23 Mesangiospermae plants. Anti-inflammatory and antineoplastic roles are important for anti-rheumatism drugs. Using the total of 555 unique ChEBI chemical entities identified from these drugs, our ChEBI-based classification analysis identified 18 anti-inflammatory, 33 antineoplastic chemicals, and 9 chemicals (including 3 diterpenoids and 3 triterpenoids) having both anti-inflammatory and antineoplastic roles. Furthermore, our study detected 22 diterpenoids and 23 triterpenoids, including 16 pentacyclic triterpenoids that are likely bioactive against rheumatism. Six drugs were found to be associated with 184 unique AEs, including three AEs (i.e., dizziness, nausea and vomiting, and anorexia) each associated with 5 drugs. Several chemical entities are classified as neurotoxins (e.g., diethyl phthalate) and allergens (e.g., eugenol), which may explain the formation of some TCD AEs. The OCMR could be efficiently queried for useful information using SPARQL scripts.

CONCLUSIONS: The OCMR ontology was developed to systematically represent 26 traditional anti-rheumatism Chinese drugs and their related information. The OCMR analysis identified possible anti-rheumatism and AE mechanisms of these drugs. Our novel ontology-based approach can also be applied to systematic representation and analysis of other traditional Chinese drugs.

Journal Article

Abstract  One unusual and challenging scientific field that has received only cursory attention to date is the three-dimensional (3D) microstructure and spatial distribution of drug(s) and formulation materials in solid dosage forms. This study aims to provide deeper insight into the relationships between the microstructure of multiple-unit pellet system (MUPS) tablets and the spatial distribution of the active pharmaceutical ingredient (API) and excipients to facilitate the design of quantitative models for drug delivery systems. Synchrotron radiation X-ray microcomputed tomography (SR-μCT) was established as a 3D structure elucidation technique, which, in conjunction with liquid chromatography coupled to mass spectrometry (LC-MS) or liquid chromatography with evaporative light-scattering detector (LC-ELSD) enables chemical analysis of tablets. On the basis of the specific interior construction of theophylline MUPS tablets, the spatial distribution of materials was acquired by quantifying microregion samples that had been validated by SR-μCT for their locations in the MUPS tablets. The 3D structure of the MUPS tablets was catalogued as three structural domains: a matrix layer (ML), a protective cushion layer (PCL), and pellets (PL). Compared with the components in the ML, components in the PL had a larger proportion of theophylline, sucrose, and diethyl phthalate and a smaller proportion of lactose and sodium lauryl sulfate, whereas glyceryl monostearate was found to account for a large portion of the PCL. Microstructural characterization-guided zonal chemical determination represents a new approach for quality assessment and the development of drug delivery systems with in-depth insight into their constituent layers on a new scale.

Journal Article

Abstract  Biochar has the potential to sequester biomass carbon efficiently into land, simultaneously while improving soil fertility and crop production. Biochar has also attracted attention as a potential sorbent for good performance on adsorption and immobilization of many organic pollutants such as phthalic acid esters (PAEs), a typical plasticizer in plastic and presenting a current environmental issue. Due to lack of investigation on the kinetic and thermodynamic adsorption-desorption of PAEs on biochar, we systematically assessed adsorption-desorption for two typical PAEs, dimethyl phthalate (DMP) and diethyl phthalate (DEP), using biochar derived from peanut hull and wheat straw at different pyrolysis temperatures (450, 550, and 650 °C). The aromaticity and specific surface area of biochars increased with the pyrolysis temperature, whereas the total amount of surface functional groups decreased. The quasi-second-order kinetic model could better describe the adsorption of DMP/DEP, and the adsorption capacity of wheat straw biochars was higher than that of peanut hull biochars, owing to the O-bearing functional groups of organic matter on exposed minerals within the biochars. The thermodynamic analysis showed that DMP/DEP adsorption on biochar is physically spontaneous and endothermic. The isothermal desorption and thermodynamic index of irreversibility indicated that DMP/DEP is stably adsorbed. Sorption of PAEs on biochar and the mechanism of desorption hysteresis provide insights relevant not only to the mitigation of plasticizer mobility but also to inform on the effect of biochar amendment on geochemical behavior of organic pollutants in the water and soil.

Journal Article

Abstract  Four wells downgradient from a landfill near Elkhart, Indiana were sampled during 2000-2002 to evaluate the presence of waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water. Compounds detected in leachate-affected ground water included detergent metabolites (p-nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate, and octylphenol monoethoxylate), plasticizers (ethanol-2-butoxy-phosphate and diethylphthalate), a plastic monomer (bisphenol A), disinfectants (1,4-dichlorobenzene and triclosan), an antioxidant (5-methyl-1H-benzotriazole), three fire-retardant compounds (tributylphosphate and tri(2-chloroethyl)phosphate, and tri(dichlorisopropyl)phosphate), and several pharmaceuticals and metabolites (acetaminophen, caffeine, cotinine, 1,7-dimethylxanthine, fluoxetine, and ibuprofen). Acetaminophen, caffeine, and cotinine detections confirm prior indications of pharmaceutical and nicotinate disposal in the landfill.

Journal Article

Abstract  Background: Phthalate exposure may increase the risk of asthma. Little is known about whether oxidative-stress related genes may alter this association. First, this motivated us to investigate whether genetic polymorphisms of the oxidative-stress related genes glutathione S-transferase Mu 1 (GSTM1), glutathione S-transferase pi 1 (GSTP1), superoxide dismutase 2 (SOD2), catalase (CAT), myeloperoxidase (MPO), and EPHX1 in children are associated with phthalate urine concentrations. Second, we addressed the question whether these genes may affect the influence of phthalates on asthma.Methods: In a case-control study composed of 126 asthmatic children and 327 controls, urine phthalate metabolites (monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono(2-ethyl-5-hydroxyhexyl)phthalate (MEHHP) were measured by UPLC-MS/MS at age 3. Genetic variants were analyzed by TaqMan assay. Information on asthma and environmental exposures was also collected. Analyses of variance and logistic regressions were performed. Results: Urine MEHHP levels were associated with asthma (adjusted OR 1.33, 95% CI (1.11-1.60). Children with the GSTP1 (rs1695) AA and SOD2 (rs5746136) TT genotypes had higher MEHHP levels as compared to GG and CC types, respectively. Since only SOD2 TT genotype was significantly associated with asthma (adjusted OR (95% CI): 2.78 (1.54-5.02)), we estimated whether SOD2 variants modify the association of MEHHP levels and asthma. As MEHHP concentrations were dependent on GSTP1 and SOD2, but the assessment of interaction requires independent variables, we estimated MEHHP residuals and assessed their interaction, showing that the OR for SOD2 TT was further elevated to 3.32 (1.75-6.32) when the residuals of MEHHP were high. Conclusions: Urine phthalate metabolite concentrations are associated with oxidative-stress related genetic variants. Genetic variants of SOD2, considered to be reflect oxidative stress metabolisms, might modify the association of phthalate exposure with asthma.

DOI
Journal Article

Abstract  As a method for making liquid chromatography a continuous operation, a simulated moving-bed adsorber has been applied. This method is applicable only to two-component mixtures. Hence a new process for multi-component separation by combining multiple liquid chromatography columns was proposed. Its applicability was confirmed partly by experiments with a single column in the process and partly by simulation of the separation of dimethyl phthalate, diethyl phthalate, and di-n-butyl phthalate. The results showed that a mixture of more than three components can be separated and refined by use of this process. The values of distribution coefficient and overall mass transfer coefficient for each component required for the simulation were obtained from impulse response experiments, using the same column.

Journal Article

Abstract  This study investigated the degradation of phthalate esters (PAEs) in marine sediments by sodium persulfate (Na2S2O8, PS) activated by a series of iron-cerium (Fe-Ce) bimetallic catalysts (FCBCs). The surface structure and chemistry of the FCBCs were characterized by TEM, HRTEM, XRD, FTIR, BET and XPS. Results show successful synthesis of FCBC catalysts. Factors such as PS concentration, Fe to Ce molar ratio, catalyst dosage, and initial pH that might affect PAEs degradation were investigated. Results revealed that PAEs was degraded more effectively over FCBC with a Fe-Ce molar ratio of 1.5:1. Increase in Ce improved the catalytic activity of FCBC due to increase in oxygen storage capacity (OSC). Acidic conditions enhanced PAEs degradation with a maximum degradation of 86% at pH 2 and rate constant (kobs) of 1.5 × 10-1 h-1 when the PS and FCBC concentrations were to 1.0 × 10-5 M and 1.67 g/L, respectively. Di-(2-ethylhexyl) phthalate (DEHP) was a salient marker of PAE contamination in sediments. Dimethyl phthalate (DMP) and diethyl phthalate (DEP) were easier to degrade than DEHP, diisononyl phthalate (DINP), dioctyl phthalate (DnOP) and diisononyl phthalate (DIDP). The synergistic catalytic effect of Fe3+/Fe2+ and Ce4+/Ce3+ redox couples, in addition to electron transfer of oxygen vacancies, activated S2O82- to generate SO4- and HO radicals, which played the major role of PAEs degradation. 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping EPR studies verified the crucial role of SO4- and HO in the oxidative degradation process. FCBC/PS oxidation exhibited high-performance for the remediation of PAEs-contaminated marine sediments.

Journal Article

Abstract  Experimental and observational data implicate phthalates as developmental toxicants. However, few data are available to assess the maternal risks of gestational exposure by race and infant sex. To begin to address this data gap, we characterized associations between maternal urinary phthalate metabolites and birth outcomes among African American and white mothers from a southeastern U.S. population. We enrolled pregnant African American (n = 152) and white (n = 158) women with singleton live births between 18 and 22 weeks gestation. We measured phthalate metabolites (mono-n-butyl phthalate (MBP), monoisobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), monoethyl phthalate (MEP), monomethyl phthalate (MMP), and the sums of DEHP (ΣDEHP) and DBP (ΣDBP) metabolites) in up to two gestational urine specimens from mothers, and evaluated confounder-adjusted associations per natural log unit greater concentration with birth weight for gestational age z-score, small for gestational age (SGA; <10th %tile), preterm birth (PTB; <37 weeks gestation), and low birth weight (LBW; <2500 g). We also tested for interactions by maternal race and infant sex. We found that lower z-scores were associated with greater MiBP (β = −0.28; 95% CI: −0.54, −0.02) and MMP (β = −0.30; 95% CI: −0.52, −0.09) concentrations, while MEP interacted with race (p = 0.04), indicating an association among whites (β = −0.14; 95% CI: −0.28, 0.001) but not among African Americans (β = 0.05; 95% CI = −0.09, 0.19). Greater MiBP (OR = 2.82; 95% CI: 1.21, 6.56) and MEOHP (OR = 2.80; 95% CI: 1.05, 7.42) were associated with an overall higher SGA risk, greater MEHP was associated with higher SGA risk (p = 0.10) in whites (OR = 3.26 95% CI: 0.64, 16.56) but not in African Americans (OR = 0.71 95% CI: 0.07, 7.17), and the associations for MiBP (p = 0.02) and ΣDBP (p = 0.02) varied by infant sex. We detected interactions for PTB in which African Americans were at higher risk than whites for greater MiBP (p = 0.08) and MEP (p = 0.02) although lower risk for greater MEHP (p = 0.09). Greater MEP was associated with an overall higher LBW risk (OR = 1.33; 95% CI: 0.95, 1.86), and males were at higher risk than females with greater MBP (p = 0.002), MiBP (p = 0.02), MBzP (p = 0.01), MEP (p = 0.002), MMP (p = 0.09), and ΣDBP (p = 0.01) concentrations. Overall, our results suggest that gestational phthalate exposure is associated with adverse maternal birth outcomes, and that the effects vary by maternal race and infant sex.

DOI
Journal Article

Abstract  Diethyl phthalate (DEP) is a representative of phthalate esters (PAEs) that are largely used as industrial additives and have become environmental contaminants and endocrine disruptors. A newly isolated bacterial strain Sphingobium yanoikuyae SHJ was found to be capable of degrading DEP very efficiently. Four intermediates during the DEP degradation process were identified to be ethyl methyl phthalate (EMP), monoethyl phthalate (MEP), monomethyl phthalate (MMP) and phthalic acid (PA) using high-performance liquid chromatography tandem high-resolution mass spectrometry (HPLC-HRMS). When there was limited oxygen under SSA conditions, the rates of the further degradation of MEP and PA were slower compared to that under aerobic conditions. Although all intermediates EMP, MEP and MMP eventually decreased or disappeared, the DEP degradation kinetics showed that EMP formed much faster than that of MEP, and MMP appeared after the decreasing of MEP. It is proposed that two DEP degradation pathways must be present in S. yanoikuyae SHJ. The first is DEP -> MEP -> PA through a sequential hydrolysis process. The second is DEP -> EMP -> MEP -> MMP -> PA through a combination of demethylation or trans-esterification with methanol and hydrolysis processes. It is concluded that S. yanoikuyae SHJ has a versatile capability of degrading DEP and will have a great application potential in bioremediation of PAEs-contaminated shallow aquifer.

DOI
Journal Article

Abstract  Liquid-liquid equilibrium data for the binary systems water + di-n-butyl phthalate, water + di-ethyl phthalate, and water + di-isobutyl hexahydrophthalate in the temperature range of (298.2 to 348.2) K at normal pressure were determined. The organic compound concentrations in the aqueous phase were measured by the high-performance liquid chromatograph, while the water concentrations in the organic phase were measured by the Karl Fischer equipment. The NRTL and UNIQUAC models, of which the interaction parameters were expressed as a function of the temperature from (298.2 to 348.2) K, were used to correlate the obtained liquid-liquid equilibrium data. The results show that the correlation accuracy of the UNIQUAC model is better than the NRTL model at the studied temperatures.

Journal Article

Abstract  Dibutyl phthalate (DBP) poses a severe threat to aquatic ecosystems, introducing hazards to both aquatic species and human health. The ecotoxic effects of DBP on aquatic organisms have not been fully investigated. This study investigates acute toxicity, oxidative damage, and antioxidant enzyme parameters in neonate and adult Daphnia magna exposed to DBP. The obtained results show comparable DBP toxic responses in neonates and adults. The median lethal concentrations (LC50) of DBP in neonates exposed for 24 and 48 h were 3.48 and 2.83 mg/L, respectively. The LC50 of adults for the same DBP exposure durations were 4.92 and 4.31 mg/L, respectively. Increased hydrogen peroxide and malondialdehyde were found in neonates and adults at both 24 and 48 h, while the total antioxidant capacity decreased. Superoxide dismutase activity increased significantly in neonates and adults exposed to 0.5 mg/L DBP, and subsequently diminished at higher DBP concentrations and prolonged exposure. Catalase and glutathione S-transferases activities both decreased markedly in neonates and adults. The changes observed were found to be time and concentration dependent. Overall, these data indicated that the acute toxic effects of DBP exposure on neonates were more pronounced than in adults, and oxidative injury may be the main mechanism of DBP toxicity. These results provide a functional link for lipid peroxidation, antioxidant capacity, and antioxidant enzyme levels in the Daphnia magna response to DBP exposure.

  • <<
  • 7 of 126
  • >>
Filter Results