Diethyl phthalate (DEP)

Project ID

1097

Category

IRIS

Added on

Jan. 7, 2010, 11:28 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Mono(2-ethylhexyl) phthalate (MEHP), the active metabolite of the testicular toxicant di(2-ethylhexyl) phthalate, inhibits FSH-stimulated rat Sertoli cell cAMP accumulation, stimulates basal lactate production, and decreases intracellular ATP levels in vitro. Dibutyl phthalate and dipentyl phthalate but not diethyldimethyl or dipropyl are also age-dependent testicular toxicants in vivo. We therefore examined the effect of animal age and phthalate monoester on the Sertoli cell FSH-stimulated cAMP accumulation, lactate secretion, and ATP levels in order to determine if these effects are part of the mechanism of action of phthalate esters in vivo. MEHP, monobutyl and monopentyl phthalates but not the monoethyl, monomethyl, or monopropyl phthalates inhibited FSH-stimulated cAMP accumulation, a segregation which matches the in vivo toxicity potential of these agents. MEHP and monopentyl, but not monobutyl phthalates, also stimulated Sertoli cell lactate secretion. The effect of the active phthalates on FSH-stimulated cAMP accumulation and lactate secretion is not dependent on age of animal over a range of 13-80 days, suggesting that the age-related toxicity in vivo may be related to differences in metabolism and disposition rather than tissue sensitivity. Since the ED50 of MEHP inhibition of cAMP accumulation and lactate secretion is similar, these two effects may be related to a common initial effect of the active phthalates. Inhibition of intracellular ATP levels is specific for MEHP and is lost with age (greater than 28 days of age) and thus is not likely to be an essential part of the in vivo mechanism of action of phthalate diesters.

Journal Article

Abstract  OBJECTIVES: This study assessed the role of polyvinyl chloride (PVC) plastics and textile materials in the home in the development of bronchial obstruction during the first 2 years of life. METHODS: The study was a matched pair case-control study based on a cohort of 3754 newborns in Oslo in 1992 and 1993 who were followed up for 2 years. The case group consisted of 251 children with bronchial obstruction; the control group was matched one-to-one for date of birth. RESULTS: In conditional logistic regression analysis, the risk of bronchial obstruction was related to the presence of PVC flooring (adjusted odds ratio [OR] = 1.89; 95% confidence interval [CI] = 1.14, 3.14) and textile wall materials (adjusted OR = 1.58; 95% CI = 0.98, 2.54). The reference category was wood or parquet flooring and painted walls and ceiling. Further analysis revealed an exposure-response relationship between the assessed amount of PVC and other plasticizer-containing surface materials and the risk of bronchial obstruction. CONCLUSIONS: This study provides new evidence of the role of PVC and textile wall materials in the development of bronchial obstruction in young children.

Journal Article

Abstract  Studies have been carried out on the simultaneous determination of 8 phthalates, i. e. di-ethyl phthalate (DEP) , di-propyl phthalate (DPP) , di-isobutyl phthalate (DIBP) , dibutyl phthalate (DBP) , benzyl butyl phthalate ( BBP) , di-cyclohexyl phthalate (DCHP) , di-(2-ethylhexyl) phthalate (DEHP), di-octyl phthalate (DOP) and 4 parabens, i. e. methylparaben (MPB), ethylparaben (EPB), propyl paraben (PPB), and butyl paraben (BPB) by gas chromatography in combination with mass spectrometry (GC/MS) in electron ionisation mode (EI) with selected-ion monitoring (SIM) acquisition method. The phthalates and parabens in 15 cosmetic products, including hair sprays, perfumes, deodorants, cream, lotion, etc. were determined. The determination of the samples were performed after sonication-assisted extraction with methanol, cleaned up with an LC-C18 column (3 mL) and analyzed by GC/MS method. The base peak (m/z 149) of the phthalates and the base peak (m/z 121) of the parabens were selected for the screening studies. The characteristic ions, m/z 121, 149, 177, 222 for DEP; m/z 149, 191, 209 for DPP; m/z 57, 149, 223 for DIBP; m/z 104, 149 for DBP; m/z 91, 132, 149, 206 for BBP; m/z 55, 149, 167 for DCHP; m/z 113, 149, 167, 279 for DEHP; m/z 149, 279 for DOP; m/z 65, 93, 121, 152 for MPB; m/z 93, 121, 138, 166 for EPB; m/z 93, 121, 138, 180 for PPB; and m/z 93, 121, 138, 194 for BPB were chosen for quantitative studies. These techniques are capable to detect phthalates and parabens at the level of 0. 1 -5. 0 microg/kg. Overall recoveries were 80% - 100% with relative standard deviations (RSDs) less than 10%. Only one of the 15 examined samples was free from phthalates and parabens. The rest 14 samples were found to contain at least 3 or more of these phthalates and/or parabens. The predominant phthalates detected in the studied samples were MPB, PPB, DPP, DCHP and DEHP. The residue levels were at 1. 42 -4 278 mg/kg.

Journal Article

Abstract  Studies on the determination of seven kinds of phthalates, i.e. diethyl phthalate, dipropyl phthalate, dibutyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di-(2-ethylhexyl) phthalate, and dioctyl phthalate, and four parabens, i.e. methylparaben, ethylparaben, propylparaben, and butylparaben, in 15 kinds of cosmetic products, including hair sprays, perfumes, deodorants, cream, lotion, etc., by HPLC with diode array detection and GC-MS in electron impact ionization mode with selected-ion monitoring have been carried out. Methods have been developed for both qualitative and quantitative detection of phthalates and parabens. Extraction, clean-up, and analysis procedures have been optimized. HPLC and GC-MS determinations were performed after sonication-assisted extraction with methanol and clean-up with C18 SPE. These techniques permit detection of phthalates at a level of 10.0-100.0 microg/kg and of parabens at a level of 20.0-200.0 microg/kg. Overall recoveries were 85-108% with RSD values of 4.2-8.8%. Only one of the 15 examined samples was free from phthalates and parabens. The remaining 14 samples were found to contain at least three or more of these phthalates and/or parabens. The predominant phthalates and parabens detected in the studied samples were methylparaben, propylparaben, diethyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, and di-(2-ethylhexyl) phthalate. The residue level is at 1.22-5289 mg/kg.

Journal Article

Abstract  Phthalic acid esters (PAEs) are used in many branches of industry and are produced in huge amounts throughout the world. An investigation on particulate- and gas-phase distribution of PAEs has been conducted in Nanjing (China). The 12-h daily sampling program (from 8:00 am to 8:00 pm) for ten consecutive days was conducted in April, July and October 2005, and in January 2006 at about 1.5m above the ground level. For comparative purposes, sampling events were simultaneously conducted at two stations, one at the urban center and the other about 12 km from city center for suburban background monitoring. It was observed that the most abundant members of the PAE group were dimethyl phthalate (DMP) (10.1 ng m(-3), average), diethyl phthalate (DEP) (3.4 ng m(-3)), dibutyl phthalate (DBP) (58.8 ng m(-3)), butylbenzyl phthalate (BBP) (3.2 ng m(-3)), di-2-ethylhexyl phthalate (DEHP) (20.3 ng m(-3)) and di-n-octyl phthalate (DOP) (1.2 ng m(-3)). The average contribution of PAEs in the gas phase to the total PAE concentration (Sigma(6)PAE, sum of six PAE congeners) ranged from 75.0% to 89.2%. Both particulate- and gas-phase Sigma(6)PAE concentrations decreased with increasing temperature. Experimentally determined gas-particle partitioning (K(p)) of PAEs is well-correlated with their vapor pressure. The Sigma(6)PAE levels in the urban area are approximately 3.5 times as high as the levels found at the suburban station. The vertical profiles from 1.5 to 30.0m above the ground display slight height dependence.

Journal Article

Abstract  Some phthalates such as di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) and their metabolites are suspected of producing teratogenic or endocrine-disrupting effects. To predict possible human exposure to phthalates in cosmetics, the levels of DEHP, diethyl phthalate (DEP), DBP and butylbenzyl phthalate (BBP) were determined by high-performance liquid chromatography (HPLC) in 102 branded hair sprays, perfumes, deodorants and nail polishes. DBP was detected in 19 of the 21 nail polishes and in 11 of the 42 perfumes, and DEP was detected in 24 of the 42 perfumes and 2 of the 8 deodorants. Median exposure levels to phthalates in cosmetics by derman absorption were estimated to be 0.0006 micrograms/kg body weight (bw)/d for DEHP, 0.6 micrograms/kg bw/d for DEP, and 0.103 micrograms/kg bw/d for DBP. Furthermore, if phthalates in cosmetics were assumed to absorbed exclusively via 100% inhalation, the median daily exposure levels to phthalates in cosmetics were estimated to be 0.026 micrograms/kg bw/d for DEHP, 81.471 micrograms/kg bw/d for DEP, and 22.917 micrograms/kg bw/d for DBP, which are far lower than the regulation levels set by the Scientific Committee on Toxicity, Ecotoxicity, and the Environment (CSTEE) (37 micrograms/kg bw/d, DEHP), Agency for Toxic Substances and Disease Registry (ATSDR) (7000 micrograms/kg bw/d, DEP), and International Programme on Chemical Safety (IPCS) (66 micrograms/kg bw/d, DBP), respectively. Based on these data, hazard indices (HI, daily exposure level/regulation level) were calculated to be 0.0007 for DEHP, 0.012 for DEP, and 0.347 for DBP. These data suggest that estimated exposure to phthalates in the cosmetics mentioned are relatively small. However, total exposure levels from several sources may be greater and require further investigation.

DOI
Journal Article

Abstract  The toxicity of 76 priority pollutants to lettuce (Lactuca sativa) was determined in soil and in nutrient solution. In the first case a static and in the latter a semistatic exposure was established Volatile and easily degradable compounds had high EC50 values in soil (> 1,000 μg/g). In nutrient solution, however, several of these compounds were rather toxic. Quantitative structure‐activity relationships (QSARs) relating EC50 values to log Kow could be described for the toxicity in nutrient solution. Generally, the toxicity of the compounds increased with increasing lipophilicity. Deviations were (partly) caused by reactivity (N‐containing compounds, double bonds in compounds), low lipophilicity (log Kow values < 1), and EC50 values close to solubility. To relate toxicity in soil and nutrient solution, soil EC50 values were recalculated to values in the soil pore water using calculated adsorption coefficients. Estimated pore‐water EC50 values showed a good correlation with values determined in nutrient solution but were not equal to these values. The differences can be attributed to differences in exposure (static vs. semistatic).

DOI
Journal Article

Abstract  Ten surficial sediment samples were collected adjacent to each of four combined sewer overflow (CSO) outfalls along the lower Passaic River in New Jersey and analyzed for priority pollutant organic and inorganic chemicals. The objectives of this investigation were to (t) characterize chemical contamination in sediments impacted by these CSOs, (2) evaluate the spatial distribution of contaminants. and (3) evaluate the possible sources of contaminants within the respective CSO districts. The results indicate that sediments proximate to the CSO outfalls are contaminated with a range of chemicals including toxic metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and other organic chemicals. The spatial distribution of these contaminants strongly suggest that the CSOs are the primary source of contamination in sediments near these outtalls. While the contribution of residential waste and stormwater may be substantial, evaluation of the industries operating with the CSO districts provides a link between the facilities that discharge wastes to the combined sewer system and chemical contaminants found in the sediments. Until adequate controls are implemented, CSOs will continue to be on-going sources of contamination affecting the water and sediment quality of the Passaic River.

Journal Article

Abstract  The content of wastewater resulting from the manufacture of rubber antioxidants and accelerators by a factory situated in the Ebro basin (Spain) has been determined using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The change in the pollutants was studied in the riverbed via two modules which continuously gathered pollutants on various solid supports (activated carbon and XAD-2 resins). These modules were located in Bocal Station, lying a further 100 km downstream from the factory, and from the Zaragoza water supply. Forty-six different compounds were identified at Bocal Station, the majority resulting from the production of rubber additives. Due to the immunity of different waste substances, and to the toxic nature of some, we studied their reaction when subjected to techniques of chemical oxidation using ozone.

Journal Article

Abstract  In this study, we hypothesized that many of the reported effects of phthalate esters and other peroxisome proliferators (PPs) in the testis are mediated by members of the PP- activated receptor (PPAR) family of transcription factors through alterations in proteins involved in steroidogenesis. Exposure of Leydig cells to PPs prevented cholesterol transport into the mitochondria after hormonal stimulation and inhibited steroid synthesis, without altering total cell protein synthesis or mitochondrial and DNA integrity. PPs also reduced the levels of the cholesterol-binding protein peripheral-type benzodiazepine receptor (PBR) because of a direct transcriptional inhibition of PBR gene expression in MA-10 Leydig cells. MA-10 cells contain mRNAs for PPARalpha and PPARbeta/delta, but not for PPARgamma. In vivo treatment of mice with PPs resulted in the reduction of both testis PBR mRNA and circulating testosterone levels, in agreement with the proposed role of PBR in steroidogenesis. By contrast, liver PBR mRNA levels were increased, in agreement with the proposed role of PBR in cell growth/tumor formation in nonsteroidogenic tissues. However, PPs did not inhibit testosterone production and testis PBR expression in PPARalpha-null mice. These results suggest that the antiandrogenic effect of PPs is mediated by a PPARalpha-dependent inhibition of Leydig cell PBR gene expression.

Journal Article

Abstract  The absorption of undiluted phthalate diesters [dimethyl phthalate (DMP), diethylphthalate (DEP), dibutyl phthalate (DBP) and di-(2-ethylhexyl)phthalate (DEHP)] has been measured in vitro through human and rat epidermal membranes. Epidermal membranes were set up in glass diffusion cells and their permeability to tritiated water measured to establish the integrity of the skin before the phthalate esters were applied to the epidermal surface. Absorption rates for each phthalate ester were determined and a second tritiated water permeability assessment made to quantify any irreversible alterations in barrier function due to contact with the esters. Rat skin was consistently more permeable to phthalate esters than the human skin. As the esters became more lipophilic and less hydrophilic, the rate of absorption was reduced. Contact with the esters caused little change in the barrier properties of human skin, but caused marked increases in the permeability to water of rat skin. Although differences were noted between species, the absolute rates of absorption measured indicate that the phthalate esters are slowly absorbed through both human and rat skin.

Journal Article

Abstract  BACKGROUND: Phthalates are widely used chemicals, and human exposure is extensive. Recent studies have indicated that phthalates may have thyroid-disrupting properties. OBJECTIVE: We aimed to assess concentrations of phthalate metabolites in urine samples from Danish children and to investigate the associations with thyroid function, insulin-like growth factor I (IGF-I), and growth. METHODS: In 845 children 4-9 years of age, we determined urinary concentrations of 12 phthalate metabolites and serum levels of thyroid-stimulating hormone, thyroid hormones, and IGF-I. RESULTS: Phthalate metabolites were detected in all urine samples, of which monobutyl phthalate was present in highest concentration. Phthalate metabolites were negatively associated with serum levels of free and total triiodothyronine, although statistically significant primarily in girls. Metabolites of di(2-ethylhexyl) phthalate and diisononyl phthalate were negatively associated with IGF-I in boys. Most phthalate metabolites were negatively associated with height, weight, body surface, and height gain in both sexes. CONCLUSIONS: Our study showed negative associations between urinary phthalate concentrations and thyroid hormones, IGF-I, and growth in children. Although our study was not designed to reveal the mechanism of action, the overall coherent negative associations between urine phthalate and thyroid and growth parameters may suggest causative negative roles of phthalate exposures for child health.

Journal Article

Abstract  Human phthalate exposure occurs as mixtures of diesters with varying activity towards testosterone-dependent development. Dibutyl (DBP), diethylhexyl (DEHP) and butylbenzyl (BBP) phthalate disrupt sexual development in the fetal rat. Dimethyl (DMP) and diethyl (DEP) phthalate do not. These differences in potency may result from differential delivery of the monophthalates to the testes or from variation in the abilities of the compounds to alter steroidogenesis. We tested five phthalates in pregnant rats (500mg/kg-d, GD12-19) and analyzed the fetal testes for corresponding monoesters (MMP, MEP, MBP, MEHP, MBeP). Testes MMP and MEP levels were 2-40-fold higher than the active monoesters, MBP and MEHP. BBP exposure led to low concentrations of MBeP, but similar MBP levels to DBP. An in vitro MA-10 cell assay measured the direct effect of monophthalates on testosterone production. MEHP inhibited LH-stimulated testosterone production at 1microM. RT-PCR confirmed down-regulation of genes associated with cholesterol transport and steroid synthesis and metabolism by MEHP. Five additional phthalates were tested for testosterone inhibition. MBP and mono-n-octyl phthalate were similar to MEHP; MMP, MEP and MBeP were poor inhibitors of testosterone production. Based on these results, differences in the phthalates' ability to interfere with sexual development in vivo appears to be more associated with differential potency for testosterone inhibition than differences in tissue doses.

Journal Article

Abstract  A large number of phthalate esters were screened for estrogenic activity using a recombinant yeast screen. a selection of these was also tested for mitogenic effect on estrogen-responsive human breast cancer cells. A small number of the commercially available phthalates tested showed extremely weak estrogenic activity. The relative potencies of these descended in the order butyl benzyl phthalate (BBP) > dibutyl phthalate (DBP) > diisobutyl phthalate (DIBP) > diethyl phthalate (DEP) > diisiononyl phthalate (DINP). Potencies ranged from approximately 1 x 10(6) to 5 x 10(7) times less than 17beta-estradiol. The phthalates that were estrogenic in the yeast screen were also mitogenic on the human breast cancer cells. Di(2-ethylhexyl) phthalate (DEHP) showed no estrogenic activity in these in vitro assays. A number of metabolites were tested, including mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mon-n-octyl phthalate; all were wound to be inactive. One of the phthalates, ditridecyl phthalate (DTDP), produced inconsistent results; one sample was weakly estrogenic, whereas another, obtained from a different source, was inactive. analysis by gel chromatography-mass spectometry showed that the preparation exhibiting estrogenic activity contained 0.5% of the ortho-isomer of bisphenol A. It is likely that the presence of this antioxidant in the phthalate standard was responsible for the generation of a dose-response curve--which was not observed with an alternative sample that had not been supplemented with o,p'-bisphenol A--in the yeast screen; hence, DTDP is probably not weakly estrogenic. The activities of simple mixtures of BBP, DBP, and 17beta-estradiol were assessed in the yeast screen. No synergism was observed, although the activities of the mixtures were approximately additive. In summary, a small number of phthalates are weakly estrogenic in vitro. No data has yet been published on whether these are also estrogenic in vitro. No data has yet been published on whether these are also estrogenic in vivo; this will require tests using different classes of vertebrates and different routes of exposure.

Journal Article

Abstract  We investigated the relationship between prenatal maternal urinary concentrations of phthalate metabolites and neonatal behavior in their 295 children enrolled in a multiethnic birth cohort between 1998 and 2002 at the Mount Sinai School of Medicine in New York City. Trained examiners administered the Brazelton Neonatal Behavioral Assessment Scale (BNBAS) to children within 5 days of delivery. We measured metabolites of 7 phthalate esters in maternal urine that was collected between 25 and 40 weeks' gestation. All but two phthalate metabolites were over 95% detectable. We summed metabolites on a molar basis into low and high molecular weight phthalates. We hypothesized the existence of sex-specific effects from phthalate exposure a priori given the hormonal activity of these chemicals. Overall we found few associations between individual phthalate metabolites or their molar sums and most of the BNBAS domains. However, we observed significant sex-phthalate metabolite interactions (p<0.10) for the Orientation and Motor domains and the overall Quality of Alertness score. Among girls, there was a significant linear decline in adjusted mean Orientation score with increasing urinary concentrations of high molecular weight phthalate metabolites (B=-0.37, p=0.02). Likewise, there was a strong linear decline in their adjusted mean Quality of Alertness score (B=-0.48, p<0.01). In addition, boys and girls demonstrated opposite patterns of association between low and high molecular weight phthalate metabolite concentrations and motor performance, with some indication of improved motor performance with increasing concentration of low molecular weight phthalate metabolites among boys. This is the first study to report an association between prenatal phthalate exposure and neurological effects in humans or animals, and as such requires replication.

Journal Article

Abstract  BACKGROUND: The ubiquitous use of phthalate esters in plastics, personal care products and food packaging materials results in widespread general population exposure. In this report, we extend our preliminary study on the relationship between urinary concentrations of phthalate metabolites and sperm DNA damage among a larger sample of men and include measurements of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), two oxidative metabolites of di-(2-ethylhexyl) phthalate (DEHP). METHODS: Among 379 men from an infertility clinic, urinary concentrations of phthalate metabolites were measured using isotope-dilution high-performance liquid chromatography-tandem mass spectrometry. Sperm DNA damage measurements, assessed with the neutral comet assay, included comet extent (CE), percentage of DNA in tail (Tail%) and tail distributed moment (TDM). RESULTS: Monoethyl phthalate (MEP), a metabolite of diethyl phthalate, was associated with increased DNA damage, confirming our previous findings. Mono-(2-ethylhexyl) phthalate (MEHP), a metabolite of DEHP, was associated with DNA damage after adjustment for the oxidative DEHP metabolites. After adjustment for MEHHP, for an interquartile range increase in urinary MEHP, CE increased 17.3% [95% confidence interval (CI) = 8.7-25.7%], TDM increased 14.3% (95% CI = 6.8-21.7%) and Tail% increased 17.5% (95% CI = 3.5-31.5%). CONCLUSIONS: Sperm DNA damage was associated with MEP and with MEHP after adjusting for DEHP oxidative metabolites, which may serve as phenotypic markers of DEHP metabolism to 'less toxic' metabolites. The urinary levels of phthalate metabolites among these men were similar to those reported for the US general population, suggesting that exposure to some phthalates may affect the population distribution of sperm DNA damage.

Journal Article

Abstract  BACKGROUND: Phthalates may pose a risk for perinatal developmental effects. An important question relates to the choice of suitable biological matrices for assessing exposure during this period. OBJECTIVES: This study was designed to measure the concentrations of phthalate diesters or their metabolites in breast milk, blood or serum, and urine and to evaluate their suitability for assessing perinatal exposure to phthalates. METHODS: In 2001, 2-3 weeks after delivery, 42 Swedish primipara provided breast milk, blood, and urine samples at home. Special care was taken to minimize contamination with phthalates (e.g., use of a special breast milk pump, heat treatment of glassware and needles, addition of phosphoric acid). RESULTS: Phthalate diesters and metabolites in milk and blood or serum, if detected, were present at concentrations close to the limit of detection. By contrast, most phthalate metabolites were detectable in urine at concentrations comparable to those from the general population in the United States and in Germany. No correlations existed between urine concentrations and those found in milk or blood/serum for single phthalate metabolites. Our data are at odds with a previous study documenting frequent detection and comparatively high concentrations of phthalate metabolites in Finnish and Danish mothers' milk. CONCLUSIONS: Concentrations of phthalate metabolites in urine are more informative than those in milk or serum. Furthermore, collection of milk or blood may be associated with discomfort and potential technical problems such as contamination (unless oxidative metabolites are measured). Although urine is a suitable matrix for health-related phthalate monitoring, urinary concentrations in nursing mothers cannot be used to estimate exposure to phthalates through milk ingestion by breast-fed infants.

Journal Article

Abstract  Background: High exposure to phthalates, which are ubiquitous contaminants, has been shown in animal studies to produce detrimental effects on male reproductive functions. A recent study in humans reported dose–response relations between low phthalate levels in urine and human semen parameters, which raises the question whether humans are more sensitive to phthalate exposure than animals. Methods: Urine, serum, and semen samples were collected from 234 young Swedish men at the time of their medical conscript examination. Semen volume, sperm concentration, and motility were measured, together with sperm chromatin integrity (sperm chromatin structure assay) and biochemical markers of epididymal and prostatic function. We analyzed reproductive hormones in serum, and mono ethyl phthalate (MEP), mono ethylhexyl phthaltale (MEHP), mono benzyl phthalate (MBzP), mono butyl phthalate (MBP), and phthalic acid in urine. Results: For MBP, MBzP, and MEHP, no clear pattern of associations were observed with any of the reproductive biomarkers. Subjects within the highest quartile for MEP had fewer motile sperm (mean difference = 8.8%; 95% confidence interval = 0.8–17), more immotile sperms (8.9%; 0.3–18), and lower luteinizing hormone values (0.7 IU/L; 0.1–1.2), but there was no suggestion of harmful effects for most other endpoints. Phthalic acid actually was associated with improved function, as measured by several markers. Conclusions: The observed weak associations between 1 phthalate biomarker and impairment of a few aspects of reproductive function biomarkers were not consistent with results from a recent U.S. study. It is not yet possible to conclude whether phthalate exposure may reflect a hazard for human male reproduction.

Journal Article

Abstract  BACKGROUND: Rates of preterm birth have been rising over the past several decades. Factors contributing to this trend remain largely unclear, and exposure to environmental contaminants may play a role. OBJECTIVE: We investigated the relationship between phthalate exposure and preterm birth. METHODS: Within a large Mexican birth cohort study, we compared third-trimester urinary phthalate metabolite concentrations in 30 women who delivered preterm (< 37 weeks of gestation) with those of 30 controls (> or = 37 weeks of gestation). RESULTS: Concentrations of most of the metabolites were similar to those reported among U.S. females, although in the present study mono-n-butyl phthalate (MBP) concentrations were higher and monobenzyl phthalate (MBzP) concentrations lower. In a crude comparison before correcting for urinary dilution, geometric mean urinary concentrations were higher for the phthalate metabolites MBP, MBzP, mono(3-carboxylpropyl) phthalate, and four metabolites of di(2-ethyl-hexyl) phthalate among women who subsequently delivered preterm. These differences remained, but were somewhat lessened, after correction by specific gravity or creatinine. In multivariate logistic regression analysis adjusted for potential confounders, elevated odds of having phthalate metabolite concentrations above the median level were found. CONCLUSIONS: We found that phthalate exposure is prevalent among this group of pregnant women in Mexico and that some phthalates may be associated with preterm birth.

Journal Article

Abstract  OBJECTIVE: To assess maternal-fetal exposure to phthalates and investigate whether in utero phthalate exposure is associated with low birth weight (LBW). STUDY DESIGN: A total of 201 newborn-mother pairs (88 LBW cases and 113 controls) residing in Shanghai were enrolled in this nested case-control study during 2005-2006. Maternal blood, cord blood, and meconium specimens were collected and analyzed for phthalates by high-performance liquid chromatography-mass spectrometry. Nonparametric tests were used to compare demographic characteristics in cases and controls. Conditional logistic regression and Spearman correlation were used to analyze the association between phthalate exposure and LBW. RESULTS: No significant differences in gestational age, prepregnancy body mass index, prenatal care, vitamin supplementation, or socioeconomic levels were found between the LBW and control infants. More than 70% of the biosamples had quantifiable levels of phthalates, with higher levels in the LBW infants compared with the controls. Prenatal di-n-butyl phthalate (DBP) exposure was associated with LBW, and di-2-ethylhexyl phthalate (DEHP) was negatively associated with birth length. After adjusting for the potential confounders, DBP concentrations in the highest quartile were associated with an increased risk of LBW. CONCLUSIONS: Newborns in China are ubiquitously exposed to phthalates; significantly higher phthalate levels were detected in LBW cases compared with controls. In utero DBP and DEHP exposures were associated with LBW in a dose-dependent manner. Prenatal phthalate exposure may be a risk factor for LBW.

Journal Article

Abstract  OBJECTIVE: To monitor the level of phthalates in human semen samples and to analyze the relationship between phthalate levels and semen parameters. METHODS: Concentrations of three kinds of commonly used phthalates (di-ethyl phthalate, DEP; di-n-butyl phthalate, DBP; di-2-ethylhexyl phthalate, DEHP) were measured using reversed-phase HPLC. Semen parameters were measured by computer aided sperm analysis (CASA). RESULTS: The three phthalates were detected in most of the biological samples, with median levels of 0.30 mg/L (0.08-1.32 mg/L) in semen specimens. There was a significant positive association between liquefied time of semen and phthalate concentrations of semen. The correlation coefficient was 0.456 for DEP, 0.475 for DBP, and 0.457 for DEHP, respectively. There was no significant difference between phthalate concentrations of semen and sperm density or livability, though the correlation coefficients were negative. CONCLUSION: These results suggest that people who reside in Shanghai are exposed to phthalates, especially to DBP and DEHP. Although the level of phthalates is relatively mild, an association of phthalate levels and reduced quality of human semen has been shown in the present study.

Journal Article

Abstract  BACKGROUND: Widespread human exposure to phthalates, some of which are developmental and reproductive toxicants in experimental animals, raises concerns about potential human health risks. Underappreciated sources of exposure include phthalates in the polymers coating some oral medications. OBJECTIVE: The objective of this study was to evaluate whether users of phthalate-containing medications have higher urinary concentrations of phthalate metabolites than do nonusers. METHODS: We used publically available files from the National Health and Nutrition Examination Survey for the years 1999-2004. For certain survey periods, participants were asked to recall use of prescription medication during the past 30 days, and for a subsample of individuals, the urinary concentrations of phthalate metabolites were measured. We a priori identified medications potentially containing phthalates as inactive ingredients and then compared the mean urinary concentration of phthalate metabolites between users and nonusers of those medications. RESULTS: Of the 7,999 persons with information on urinary phthalate concentrations, 6 reported using mesalamine formulations, some of which may include dibutyl phthalate (DBP); the mean urinary concentration of monobutyl phthalate, the main DBP metabolite, among these mesalamine users was 50 times higher than the mean for nonusers (2,257 microg/L vs. 46 microg/L; p < 0.0001). Users of didanosine, omeprazole, and theophylline products, some of which may contain diethyl phthalate (DEP), had mean urinary concentrations of monoethyl phthalate, the main DEP metabolite, significantly higher than the mean for nonusers. CONCLUSION: Select medications might be a source of high exposure to some phthalates, one of which, DBP, shows adverse developmental and reproductive effects in laboratory animals. These results raise concern about potential human health risks, specifically among vulnerable segments of the general population and particularly pregnant women and children.

WoS
Book/Book Chapter

Abstract  It is important to know both the emission and the sorption behavior of materials when constructing or renovating buildings in order to avoid material related indoor climate problems. With a general, low-cost test method, the sink effect of materials under normal conditions can be incorporated as information in an indoor climate labeling system for materials. Reconditioned samples of waterborne paint applied on tinned steel plates and carpet were placed in small test chambers at a controlled air exchange rate and mean air velocity. The sorption behavior of the materials was studied, while ambient air from a recently renovated office environment was passed through the chambers. The desorption of VOCs from the test samples was analyzed chemically and by sensory evaluation. The results showed a correlation between the chamber concentration in the desorption phase expressed as the percentage of the concentration in the office air and the gas chromatographic retention times of the VOCs (using a semipolar column). The results are used to propose a general test method for assessing the sink effects of materials used in the indoor environment. A mixture of pollutants with affinities to indoor surfaces is proposed for adsorption testing under controlled environmental conditions. A mathematical model of the distribution of emitted VOCs between indoor air and sinks is proposed. It is possible to calculate the impact of the sinks on the indoor air quality by comparison within door relevant thresholds for odor and mucous membrane irritation.

  • <<
  • 2 of 126
  • >>
Filter Results